IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v325y2025ics0360544225017463.html
   My bibliography  Save this article

Data-driven distributionally robust stochastic optimal dispatching method of integrated energy system considering multiple uncertainties

Author

Listed:
  • Zhou, Yixing
  • Hou, Hongjuan
  • Yan, Haoran
  • Wang, Xi
  • Zhou, Rhonin

Abstract

The integrated energy system (IES) has attracted significant attention due to the advancements in multi-energy complementary technology. However, the uncertainties of renewable energy output and load variability, pose challenges to effectively implementing the dispatching plan. At present, the majority of research studies about uncertainties employ a unified modeling approach to address uncertain factors with diverse characteristics, resulting in compromised reliability and cost-effectiveness of the scheduling plan. In this paper, a two-stage distributionally robust stochastic optimization model is proposed to optimize the operation strategy wherein the uncertainties associated with renewable energy and user load are described by different model. For the load side uncertainties, to enhance the representativeness of the scenarios set, generative adversarial networks are employed for its construction. Compared with the source side, it is relatively stable, a scenario-based stochastic programming is adopted to obtain the optimal expectation of objective. For the source side, which has stronger uncertainties, to obtain the feasible dispatching plan under the worst case of renewable energy output, distributionally robust optimization is adopted. To evaluate the effectiveness of the proposed method, a typical-structure IES is discussed as a case study. The results shown that, compared with the traditional stochastic optimization method, the scheduling plan is more reliable; and more economic compared with robust stochastic optimization, the proposed method can save the cost by an average of 11 %, which is beneficial for decision-makers to achieve a balance between economy and reliability in practice.

Suggested Citation

  • Zhou, Yixing & Hou, Hongjuan & Yan, Haoran & Wang, Xi & Zhou, Rhonin, 2025. "Data-driven distributionally robust stochastic optimal dispatching method of integrated energy system considering multiple uncertainties," Energy, Elsevier, vol. 325(C).
  • Handle: RePEc:eee:energy:v:325:y:2025:i:c:s0360544225017463
    DOI: 10.1016/j.energy.2025.136104
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225017463
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.136104?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Li, Jinghua & Fang, Jiakun & Zeng, Qing & Chen, Zhe, 2016. "Optimal operation of the integrated electrical and heating systems to accommodate the intermittent renewable sources," Applied Energy, Elsevier, vol. 167(C), pages 244-254.
    2. Wang, L.L. & Xian, R.C. & Jiao, P.H. & Liu, X.H. & Xing, Y.W. & Wang, W., 2024. "Cooperative operation of industrial/commercial/residential integrated energy system with hydrogen energy based on Nash bargaining theory," Energy, Elsevier, vol. 288(C).
    3. Liu, Chunyu & Zheng, Xinrui & Yang, Haibin & Tang, Waiching & Sang, Guochen & Cui, Hongzhi, 2023. "Techno-economic evaluation of energy storage systems for concentrated solar power plants using the Monte Carlo method," Applied Energy, Elsevier, vol. 352(C).
    4. Wu, Mou & Yan, Rujing & Zhang, Jing & Fan, Junqiu & Wang, Jiangjiang & Bai, Zhang & He, Yu & Cao, Guoqiang & Hu, Keling, 2024. "An enhanced stochastic optimization for more flexibility on integrated energy system with flexible loads and a high penetration level of renewables," Renewable Energy, Elsevier, vol. 227(C).
    5. Kong, Xiangyu & Xiao, Jie & Liu, Dehong & Wu, Jianzhong & Wang, Chengshan & Shen, Yu, 2020. "Robust stochastic optimal dispatching method of multi-energy virtual power plant considering multiple uncertainties," Applied Energy, Elsevier, vol. 279(C).
    6. Li, Yuxuan & Zhang, Junli & Wu, Xiao & Shen, Jiong & Maréchal, François, 2023. "Stochastic-robust planning optimization method based on tracking-economy extreme scenario tradeoff for CCHP multi-energy system," Energy, Elsevier, vol. 283(C).
    7. Jin, Ming & Feng, Wei & Liu, Ping & Marnay, Chris & Spanos, Costas, 2017. "MOD-DR: Microgrid optimal dispatch with demand response," Applied Energy, Elsevier, vol. 187(C), pages 758-776.
    8. Alabi, Tobi Michael & Lu, Lin & Yang, Zaiyue, 2022. "Data-driven optimal scheduling of multi-energy system virtual power plant (MEVPP) incorporating carbon capture system (CCS), electric vehicle flexibility, and clean energy marketer (CEM) strategy," Applied Energy, Elsevier, vol. 314(C).
    9. He, Chuan & Wu, Lei & Liu, Tianqi & Wei, Wei & Wang, Cheng, 2018. "Co-optimization scheduling of interdependent power and gas systems with electricity and gas uncertainties," Energy, Elsevier, vol. 159(C), pages 1003-1015.
    10. Zhang, Yachao & Liu, Yan & Shu, Shengwen & Zheng, Feng & Huang, Zhanghao, 2021. "A data-driven distributionally robust optimization model for multi-energy coupled system considering the temporal-spatial correlation and distribution uncertainty of renewable energy sources," Energy, Elsevier, vol. 216(C).
    11. Wang, Jianxiao & Zhong, Haiwang & Tang, Wenyuan & Rajagopal, Ram & Xia, Qing & Kang, Chongqing & Wang, Yi, 2017. "Optimal bidding strategy for microgrids in joint energy and ancillary service markets considering flexible ramping products," Applied Energy, Elsevier, vol. 205(C), pages 294-303.
    12. Zhu, Yansong & Liu, Jizhen & Hu, Yong & Xie, Yan & Zeng, Deliang & Li, Ruilian, 2024. "Distributionally robust optimization model considering deep peak shaving and uncertainty of renewable energy," Energy, Elsevier, vol. 288(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ren, Junzhi & Zeng, Yuan & Qin, Chao & Li, Bao & Wang, Ziqiang & Yuan, Quan & Zhai, Hefeng & Li, Peng, 2024. "Characterization and application of flexible operation region of virtual power plant," Applied Energy, Elsevier, vol. 371(C).
    2. Dranka, Géremi Gilson & Ferreira, Paula & Vaz, A. Ismael F., 2021. "A review of co-optimization approaches for operational and planning problems in the energy sector," Applied Energy, Elsevier, vol. 304(C).
    3. Mehdizadeh, Ali & Taghizadegan, Navid & Salehi, Javad, 2018. "Risk-based energy management of renewable-based microgrid using information gap decision theory in the presence of peak load management," Applied Energy, Elsevier, vol. 211(C), pages 617-630.
    4. Li, Jiaxin & Xu, Zhanbo & Zhou, Yuzhou & Li, Yuting & Wu, Jiang & Guan, Xiaohong, 2024. "Optimal scheduling method and fast-solving algorithm for large-scale virtual power plants communication networks," Applied Energy, Elsevier, vol. 371(C).
    5. Wu, Mou & Yan, Rujing & Zhang, Jing & Fan, Junqiu & Wang, Jiangjiang & Bai, Zhang & He, Yu & Cao, Guoqiang & Hu, Keling, 2024. "An enhanced stochastic optimization for more flexibility on integrated energy system with flexible loads and a high penetration level of renewables," Renewable Energy, Elsevier, vol. 227(C).
    6. Son, Yeong Geon & Kim, Sung Yul, 2025. "Distributionally robust planning for power-to- gas integrated large wind farm systems incorporating hydrogen production switch control model," Energy, Elsevier, vol. 314(C).
    7. Son, Yeong Geon & Kim, Sung Yul, 2024. "Optimal planning and operation of integrated energy systems in South Korea: Introducing a Novel ambiguity set based distributionally robust optimization," Energy, Elsevier, vol. 307(C).
    8. Jiang, Tao & Wu, Chenghao & Huang, Tao & Zhang, Rufeng & Li, Xue, 2024. "Optimal market participation of VPPs in TSO-DSO coordinated energy and flexibility markets," Applied Energy, Elsevier, vol. 360(C).
    9. Wang, Yunqi & Qiu, Jing & Tao, Yuechuan, 2022. "Robust energy systems scheduling considering uncertainties and demand side emission impacts," Energy, Elsevier, vol. 239(PD).
    10. Yang, Mao & Wang, Jinxin & Chen, Yiming & Zeng, Yuxuan & Su, Xin, 2024. "Data-driven robust optimization scheduling for microgrid day-ahead to intra-day operations based on renewable energy interval prediction," Energy, Elsevier, vol. 313(C).
    11. Ma, Ying & Li, Zhen & Liu, Ruyi & Liu, Bin & Yu, Samson S. & Liao, Xiaozhong & Shi, Peng, 2025. "Data-Driven interval robust optimization method of VPP Bidding strategy in spot market under multiple uncertainties," Applied Energy, Elsevier, vol. 384(C).
    12. Alabi, Tobi Michael & Aghimien, Emmanuel I. & Agbajor, Favour D. & Yang, Zaiyue & Lu, Lin & Adeoye, Adebusola R. & Gopaluni, Bhushan, 2022. "A review on the integrated optimization techniques and machine learning approaches for modeling, prediction, and decision making on integrated energy systems," Renewable Energy, Elsevier, vol. 194(C), pages 822-849.
    13. Qing, Ke & Huang, Qi & Du, Yuefang & Jiang, Lin & Bamisile, Olusola & Hu, Weihao, 2023. "Distributionally robust unit commitment with an adjustable uncertainty set and dynamic demand response," Energy, Elsevier, vol. 262(PA).
    14. Àlex Alonso-Travesset & Helena Martín & Sergio Coronas & Jordi de la Hoz, 2022. "Optimization Models under Uncertainty in Distributed Generation Systems: A Review," Energies, MDPI, vol. 15(5), pages 1-40, March.
    15. He, Jiaming & Tan, Qinliang & Lv, Hanyu, 2025. "Data-driven climate resilience assessment for distributed energy systems using diffusion transformer and polynomial expansions," Applied Energy, Elsevier, vol. 380(C).
    16. Zhihan Shi & Weisong Han & Guangming Zhang & Zhiqing Bai & Mingxiang Zhu & Xiaodong Lv, 2022. "Research on Low-Carbon Energy Sharing through the Alliance of Integrated Energy Systems with Multiple Uncertainties," Energies, MDPI, vol. 15(24), pages 1-20, December.
    17. Ziyu Li & Bangjun Wang, 2024. "A Bibliometric Analysis of Carbon Allowances in the Carbon Emissions Trading Market," Energies, MDPI, vol. 18(1), pages 1-18, December.
    18. Li, Yang & Wang, Bin & Yang, Zhen & Li, Jiazheng & Chen, Chen, 2022. "Hierarchical stochastic scheduling of multi-community integrated energy systems in uncertain environments via Stackelberg game," Applied Energy, Elsevier, vol. 308(C).
    19. Jingjing Zhai & Xiaobei Wu & Zihao Li & Shaojie Zhu & Bo Yang & Haoming Liu, 2021. "Day-Ahead and Intra-Day Collaborative Optimized Operation among Multiple Energy Stations," Energies, MDPI, vol. 14(4), pages 1-33, February.
    20. Chun Wei & Xiangzhi Xu & Youbing Zhang & Xiangshan Li, 2019. "A Survey on Optimal Control and Operation of Integrated Energy Systems," Complexity, Hindawi, vol. 2019, pages 1-14, December.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:325:y:2025:i:c:s0360544225017463. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.