IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v227y2024ics0960148124005676.html
   My bibliography  Save this article

An enhanced stochastic optimization for more flexibility on integrated energy system with flexible loads and a high penetration level of renewables

Author

Listed:
  • Wu, Mou
  • Yan, Rujing
  • Zhang, Jing
  • Fan, Junqiu
  • Wang, Jiangjiang
  • Bai, Zhang
  • He, Yu
  • Cao, Guoqiang
  • Hu, Keling

Abstract

Full utilization of the potential regulation ability of flexible loads in an integrated energy system (IES) and expanding its structure for more flexibility via integrating auxiliary devices is the key to realizing its high-efficiency operation and high-proportion renewable consumption. The present paper builds the flexible regulation models of thermal and electrical loads and introduces them to the structure expansion planning of IES. A two-stage stochastic probability optimization method integrating the uncertain operation of introducing flexible loads is then proposed to balance the additional costs of device integration and the benefits of performance promotion. Herein, an enhanced sample average approximation based on a stochastic hierarchy scenario generation method is developed to solve the optimization. The regulation mechanisms of flexible loads and their influence on expansion planning are then analyzed by comparing the optimized results. The results show that the path to decreasing the cost via introducing flexible thermal and electrical loads into optimization is increasing renewable consumption and coordinating an increment in renewable consumption and average electrical efficiency, respectively. The regulation between them has synergism on cost reduction and saturation on increasing renewable consumption. The synergism can reduce the cost by 0.62 %. Besides, there is a synergism between electric boiler integration and flexible loads, which further reduces the total cost of the expanded IES by 24.86 %.

Suggested Citation

  • Wu, Mou & Yan, Rujing & Zhang, Jing & Fan, Junqiu & Wang, Jiangjiang & Bai, Zhang & He, Yu & Cao, Guoqiang & Hu, Keling, 2024. "An enhanced stochastic optimization for more flexibility on integrated energy system with flexible loads and a high penetration level of renewables," Renewable Energy, Elsevier, vol. 227(C).
  • Handle: RePEc:eee:renene:v:227:y:2024:i:c:s0960148124005676
    DOI: 10.1016/j.renene.2024.120502
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124005676
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.120502?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:227:y:2024:i:c:s0960148124005676. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.