IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v388y2025ics0306261925003691.html
   My bibliography  Save this article

Hierarchical distributionally robust scheduling strategy for distributed energy systems in the energy-sharing environment

Author

Listed:
  • Zhang, Sen
  • Hu, Weihao
  • Du, Jialin
  • Cao, Xilin
  • Bai, Chunguang
  • Liu, Wen
  • Wang, Daojuan
  • Chen, Zhe

Abstract

Energy sharing in distributed energy systems constitutes the pivotal strategy development for enhancing clean energy utilization and low-carbon emission achievement. However, as market mechanisms continue to improve, energy trading in distributed energy systems will shift from the traditional system-to-system model to the multi-stakeholder model. Therefore, this study constructs a two-layer energy-sharing framework that contains different stakeholders. Firstly, the energy system operator guides the energy-sharing behavior among distributed energy systems through energy transaction pricing to maximize its revenue. Then, the distributed energy systems obtain optimal energy sharing and internal operation strategies based on the energy system operator's price signals to minimize their energy costs. Additionally, this study addresses the uncertainty of renewable energy generation in distributed energy systems using the Wasserstein metric ambiguity set, and combines it with the energy sharing issue to form a distributionally robust energy trading optimization model. Finally, to solve the two-layer multi-agent distributionally robust energy sharing problem, we employ strong duality theory to transform the problem into a more solvable form. An adaptive genetic algorithm-analytical target cascading method is proposed to achieve optimal transaction pricing and energy scheduling. The case analysis results demonstrate that the proposed strategy can achieve economic benefits of 5.51 % and environmental benefits of 5.73 %, effectively balancing economic efficiency and robustness.

Suggested Citation

  • Zhang, Sen & Hu, Weihao & Du, Jialin & Cao, Xilin & Bai, Chunguang & Liu, Wen & Wang, Daojuan & Chen, Zhe, 2025. "Hierarchical distributionally robust scheduling strategy for distributed energy systems in the energy-sharing environment," Applied Energy, Elsevier, vol. 388(C).
  • Handle: RePEc:eee:appene:v:388:y:2025:i:c:s0306261925003691
    DOI: 10.1016/j.apenergy.2025.125639
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261925003691
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2025.125639?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tariq, Abdul Haseeb & Amin, Uzma, 2025. "Peer-to-peer multi-energy trading in a decentralized network: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 208(C).
    2. Wang, Yuwei & Yang, Yuanjuan & Fei, Haoran & Song, Minghao & Jia, Mengyao, 2022. "Wasserstein and multivariate linear affine based distributionally robust optimization for CCHP-P2G scheduling considering multiple uncertainties," Applied Energy, Elsevier, vol. 306(PA).
    3. Wang, Xuejie & Li, Bingkang & Wang, Yuwei & Lu, Hao & Zhao, Huiru & Xue, Wanlei, 2022. "A bargaining game-based profit allocation method for the wind-hydrogen-storage combined system," Applied Energy, Elsevier, vol. 310(C).
    4. Li, Li & Fan, Shuai & Xiao, Jucheng & Zhou, Huan & Shen, Yu & He, Guangyu, 2024. "Fair trading strategy in multi-energy systems considering design optimization and demand response based on consumer psychology," Energy, Elsevier, vol. 306(C).
    5. Wu, Mou & Yan, Rujing & Zhang, Jing & Fan, Junqiu & Wang, Jiangjiang & Bai, Zhang & He, Yu & Cao, Guoqiang & Hu, Keling, 2024. "An enhanced stochastic optimization for more flexibility on integrated energy system with flexible loads and a high penetration level of renewables," Renewable Energy, Elsevier, vol. 227(C).
    6. Rani, Preeti & Parkash, Ved & Sharma, Naveen Kumar, 2024. "Technological aspects, utilization and impact on power system for distributed generation: A comprehensive survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    7. Hoque, Md Murshadul & Khorasany, Mohsen & Azim, M. Imran & Razzaghi, Reza & Jalili, Mahdi, 2024. "A framework for prosumer-centric peer-to-peer energy trading using network-secure export–import limits," Applied Energy, Elsevier, vol. 361(C).
    8. Zhou, Chenghan & Jia, Hongjie & Jin, Xiaolong & Mu, Yunfei & Yu, Xiaodan & Xu, Xiandong & Li, Binghui & Sun, Weichen, 2023. "Two-stage robust optimization for space heating loads of buildings in integrated community energy systems," Applied Energy, Elsevier, vol. 331(C).
    9. Zhao, Zehua & Luo, Fengji & He, Yu & Ranzi, Gianluca, 2024. "Personalized P2P energy trading system based on socio-demographic characteristic inference and AC network constraints," Applied Energy, Elsevier, vol. 368(C).
    10. Soto, Esteban A. & Bosman, Lisa B. & Wollega, Ebisa & Leon-Salas, Walter D., 2021. "Peer-to-peer energy trading: A review of the literature," Applied Energy, Elsevier, vol. 283(C).
    11. Han, Fengwu & Zhao, Yunlong & Zeng, Jianfeng & Zhang, Shengnan & Wu, Tianyu, 2024. "Uncertain parameters adjustable two-stage robust optimization of a rural housing integrated energy system considering biomass on-site utilization," Energy, Elsevier, vol. 296(C).
    12. Zhang, Sen & Hu, Weihao & Cao, Xilin & Du, Jialin & Zhao, Yincheng & Bai, Chunguang & Liu, Wen & Tang, Ming & Zhan, Wei & Chen, Zhe, 2024. "A two-stage robust low-carbon operation strategy for interconnected distributed energy systems considering source-load uncertainty," Applied Energy, Elsevier, vol. 368(C).
    13. Yan, Yixian & Huang, Chang & Guan, Junquan & Zhang, Qi & Cai, Yang & Wang, Weiliang, 2024. "Stochastic optimization of solar-based distributed energy system: An error-based scenario with a day-ahead and real-time dynamic scheduling approach," Applied Energy, Elsevier, vol. 363(C).
    14. Tushar, Wayes & Saha, Tapan Kumar & Yuen, Chau & Morstyn, Thomas & McCulloch, Malcolm D. & Poor, H. Vincent & Wood, Kristin L., 2019. "A motivational game-theoretic approach for peer-to-peer energy trading in the smart grid," Applied Energy, Elsevier, vol. 243(C), pages 10-20.
    15. Jia, Hongjie & Wang, Xiaoyu & Jin, Xiaolong & Cheng, Lin & Mu, Yunfei & Yu, Xiaodan & Wei, Wei, 2024. "Optimal pricing of integrated community energy system for building prosumers with P2P multi-energy trading," Applied Energy, Elsevier, vol. 365(C).
    16. Arrigo, Adriano & Ordoudis, Christos & Kazempour, Jalal & De Grève, Zacharie & Toubeau, Jean-François & Vallée, François, 2022. "Wasserstein distributionally robust chance-constrained optimization for energy and reserve dispatch: An exact and physically-bounded formulation," European Journal of Operational Research, Elsevier, vol. 296(1), pages 304-322.
    17. Jin, Xiaoyu & Liu, Benxi & Liao, Shengli & Cheng, Chuntian & Zhang, Yi & Zhao, Zhipeng & Lu, Jia, 2022. "Wasserstein metric-based two-stage distributionally robust optimization model for optimal daily peak shaving dispatch of cascade hydroplants under renewable energy uncertainties," Energy, Elsevier, vol. 260(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sara Khan & Uzma Amin & Ahmed Abu-Siada, 2024. "P2P Energy Trading of EVs Using Blockchain Technology in Centralized and Decentralized Networks: A Review," Energies, MDPI, vol. 17(9), pages 1-17, April.
    2. Keyong Hu & Qingqing Yang & Lei Lu & Yu Zhang & Shuifa Sun & Ben Wang, 2025. "Two-Stage Distributionally Robust Optimal Scheduling for Integrated Energy Systems Considering Uncertainties in Renewable Generation and Loads," Mathematics, MDPI, vol. 13(9), pages 1-30, April.
    3. Filipe Bandeiras & Álvaro Gomes & Mário Gomes & Paulo Coelho, 2023. "Exploring Energy Trading Markets in Smart Grid and Microgrid Systems and Their Implications for Sustainability in Smart Cities," Energies, MDPI, vol. 16(2), pages 1-41, January.
    4. Jin, Xiaoyu & Liu, Benxi & Liao, Shengli & Cheng, Chuntian & Yan, Zhiyu, 2022. "A Wasserstein metric-based distributionally robust optimization approach for reliable-economic equilibrium operation of hydro-wind-solar energy systems," Renewable Energy, Elsevier, vol. 196(C), pages 204-219.
    5. Javier Parra-Domínguez & Esteban Sánchez & Ángel Ordóñez, 2023. "The Prosumer: A Systematic Review of the New Paradigm in Energy and Sustainable Development," Sustainability, MDPI, vol. 15(13), pages 1-44, July.
    6. Han, Fengwu & Zeng, Jianfeng & Lin, Junjie & Gao, Chong, 2023. "Multi-stage distributionally robust optimization for hybrid energy storage in regional integrated energy system considering robustness and nonanticipativity," Energy, Elsevier, vol. 277(C).
    7. Wang, Yuwei & Song, Minghao & Jia, Mengyao & Shi, Lin & Li, Bingkang, 2023. "TimeGAN based distributionally robust optimization for biomass-photovoltaic-hydrogen scheduling under source-load-market uncertainties," Energy, Elsevier, vol. 284(C).
    8. Cheng, Wenjie & Zhao, Zhipeng & Cheng, Chuntian & Yu, Zhihui & Gao, Ying, 2024. "Optimizing peak shaving operation in hydro-dominated hybrid power systems with limited distributional information on renewable energy uncertainty," Renewable Energy, Elsevier, vol. 237(PC).
    9. Zheng, Boshen & Wei, Wei & Chen, Yue & Wu, Qiuwei & Mei, Shengwei, 2022. "A peer-to-peer energy trading market embedded with residential shared energy storage units," Applied Energy, Elsevier, vol. 308(C).
    10. Kisal Kawshika Gunawardana Hathamune Liyanage & Shama Naz Islam, 2024. "Comparative Analysis of Market Clearing Mechanisms for Peer-to-Peer Energy Market Based on Double Auction," Energies, MDPI, vol. 17(22), pages 1-17, November.
    11. Meritxell Domènech Monfort & César De Jesús & Natapon Wanapinit & Niklas Hartmann, 2022. "A Review of Peer-to-Peer Energy Trading with Standard Terminology Proposal and a Techno-Economic Characterisation Matrix," Energies, MDPI, vol. 15(23), pages 1-29, November.
    12. Zeng, Yu & Wei, Xuan & Yao, Yuan & Xu, Yinliang & Sun, Hongbin & Kin Victor Chan, Wai & Feng, Wei, 2023. "Determining the pricing and deployment strategy for virtual power plants of peer-to-peer prosumers: A game-theoretic approach," Applied Energy, Elsevier, vol. 345(C).
    13. Dong, Jingya & Song, Chunhe & Liu, Shuo & Yin, Huanhuan & Zheng, Hao & Li, Yuanjian, 2022. "Decentralized peer-to-peer energy trading strategy in energy blockchain environment: A game-theoretic approach," Applied Energy, Elsevier, vol. 325(C).
    14. Zhao, Yunlong & Han, Fengwu & Zeng, Jianfeng & Zhang, Shengnan & Wu, Tianyu & Zhou, Luming & Gao, Jianwei, 2024. "Coordinated optimization of integrated rural multiple regional energy systems considering electricity to ammonia and improved Shapley value revenue allocation," Energy, Elsevier, vol. 313(C).
    15. Hosseini Dolatabadi, Sayed Hamid & Bhuiyan, Tanveer Hossain & Chen, Yang & Morales, Jose Luis, 2024. "A stochastic game-theoretic optimization approach for managing local electricity markets with electric vehicles and renewable sources," Applied Energy, Elsevier, vol. 368(C).
    16. Yin, Boyi & Zhu, Wenjiang & Tang, Cheng & Wang, Can & Xu, Xinhai, 2025. "Hierarchical optimal scheduling of IES considering SOFC degradation, internal and external uncertainties," Applied Energy, Elsevier, vol. 381(C).
    17. Han, Fengwu & Zeng, Jianfeng & Lin, Junjie & Zhao, Yunlong & Gao, Chong, 2023. "A stochastic hierarchical optimization and revenue allocation approach for multi-regional integrated energy systems based on cooperative games," Applied Energy, Elsevier, vol. 350(C).
    18. Shama Naz Islam, 2024. "A Review of Peer-to-Peer Energy Trading Markets: Enabling Models and Technologies," Energies, MDPI, vol. 17(7), pages 1-18, April.
    19. Azim, M. Imran & Tushar, Wayes & Saha, Tapan K. & Yuen, Chau & Smith, David, 2022. "Peer-to-peer kilowatt and negawatt trading: A review of challenges and recent advances in distribution networks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    20. Zhou, Kaile & Fei, Zhineng & Hu, Rong, 2023. "Hybrid robust decentralized optimization of emission-aware multi-energy microgrids considering multiple uncertainties," Energy, Elsevier, vol. 265(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:388:y:2025:i:c:s0306261925003691. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.