IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v13y2025i9p1439-d1644356.html
   My bibliography  Save this article

Two-Stage Distributionally Robust Optimal Scheduling for Integrated Energy Systems Considering Uncertainties in Renewable Generation and Loads

Author

Listed:
  • Keyong Hu

    (School of Information Science and Technology, Hangzhou Normal University, Hangzhou 311121, China
    Mobile Health Management System Engineering Research Center of the Ministry of Education, Hangzhou 311121, China)

  • Qingqing Yang

    (School of Information Science and Technology, Hangzhou Normal University, Hangzhou 311121, China)

  • Lei Lu

    (School of Information Science and Technology, Hangzhou Normal University, Hangzhou 311121, China)

  • Yu Zhang

    (School of Engineering, Hangzhou Normal University, Hangzhou 311121, China)

  • Shuifa Sun

    (School of Information Science and Technology, Hangzhou Normal University, Hangzhou 311121, China
    Mobile Health Management System Engineering Research Center of the Ministry of Education, Hangzhou 311121, China)

  • Ben Wang

    (School of Information Science and Technology, Hangzhou Normal University, Hangzhou 311121, China
    Mobile Health Management System Engineering Research Center of the Ministry of Education, Hangzhou 311121, China)

Abstract

To effectively account for the impact of fluctuations in the power generation efficiency of renewable energy sources such as photovoltaics (PVs) and wind turbines (WTs), as well as the uncertainties in load demand within an integrated energy system (IES), this article develops an IES model incorporating power generation units such as PV, WT, microturbines (MTs), Electrolyzer (EL), and Hydrogen Fuel Cell (HFC), along with energy storage components including batteries and heating storage systems. Furthermore, a demand response (DR) mechanism is introduced to dynamically regulate the energy supply–demand balance. In modeling uncertainties, this article utilizes historical data on PV, WT, and loads, combined with the adjustability of decision variables, to generate a large set of initial scenarios through the Monte Carlo (MC) sampling algorithm. These scenarios are subsequently reduced using a combination of the K-means clustering algorithm and the Simultaneous Backward Reduction (SBR) technique to obtain representative scenarios. To further manage uncertainties, a distributionally robust optimization (DRO) approach is introduced. This method uses 1-norm and ∞-norm constraints to define an ambiguity set of probability distributions, thereby restricting the fluctuation range of probability distributions, mitigating the impact of deviations on optimization results, and achieving a balance between robustness and economic efficiency in the optimization process. Finally, the model is solved using the column and constraint generation algorithm, and its robustness and effectiveness are validated through case studies. The MC sampling method adopted in this article, compared to Latin hypercube sampling followed by clustering-based scenario reduction, achieves a maximum reduction of approximately 17.81% in total system cost. Additionally, the results confirm that as the number of generated scenarios increases, the optimized cost decreases, with a maximum reduction of 1.14%. Furthermore, a comprehensive cost analysis of different uncertainties modeling approaches is conducted, demonstrating that the optimization results lie between those obtained from stochastic optimization (SO) and robust optimization (RO), effectively balancing conservatism and economic efficiency.

Suggested Citation

  • Keyong Hu & Qingqing Yang & Lei Lu & Yu Zhang & Shuifa Sun & Ben Wang, 2025. "Two-Stage Distributionally Robust Optimal Scheduling for Integrated Energy Systems Considering Uncertainties in Renewable Generation and Loads," Mathematics, MDPI, vol. 13(9), pages 1-30, April.
  • Handle: RePEc:gam:jmathe:v:13:y:2025:i:9:p:1439-:d:1644356
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/13/9/1439/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/13/9/1439/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Li, Yuchun & Wang, Jinkuan & Zhang, Yan & Han, Yinghua, 2022. "Day-ahead scheduling strategy for integrated heating and power system with high wind power penetration and integrated demand response: A hybrid stochastic/interval approach," Energy, Elsevier, vol. 253(C).
    2. Ma, Miaomiao & Long, Zijuan & Liu, Xiangjie & Lee, Kwang Y., 2025. "Distributionally robust optimization of electric–thermal–hydrogen integrated energy system considering source–load uncertainty," Energy, Elsevier, vol. 316(C).
    3. Amuakwa-Mensah, Franklin & Näsström, Elin, 2022. "Role of banking sector performance in renewable energy consumption," Applied Energy, Elsevier, vol. 306(PB).
    4. Gao, Yuan & Tahir, Mustafa & Siano, Pierluigi & Bi, Yue & Hu, Sile & Yang, Jiaqiang, 2025. "Optimization of renewable energy-based integrated energy systems: A three-stage stochastic robust model," Applied Energy, Elsevier, vol. 377(PD).
    5. Zamani Gargari, Milad & Tarafdar Hagh, Mehrdad & Ghassem Zadeh, Saeid, 2023. "Preventive scheduling of a multi-energy microgrid with mobile energy storage to enhance the resiliency of the system," Energy, Elsevier, vol. 263(PC).
    6. Yang, Jun & Su, Changqi, 2021. "Robust optimization of microgrid based on renewable distributed power generation and load demand uncertainty," Energy, Elsevier, vol. 223(C).
    7. Son, Yeong Geon & Kim, Sung Yul, 2024. "Optimal planning and operation of integrated energy systems in South Korea: Introducing a Novel ambiguity set based distributionally robust optimization," Energy, Elsevier, vol. 307(C).
    8. Wu, Mou & Yan, Rujing & Zhang, Jing & Fan, Junqiu & Wang, Jiangjiang & Bai, Zhang & He, Yu & Cao, Guoqiang & Hu, Keling, 2024. "An enhanced stochastic optimization for more flexibility on integrated energy system with flexible loads and a high penetration level of renewables," Renewable Energy, Elsevier, vol. 227(C).
    9. Zhang, Rufeng & Chen, Yan & Li, Zhengmao & Jiang, Tao & Li, Xue, 2024. "Two-stage robust operation of electricity-gas-heat integrated multi-energy microgrids considering heterogeneous uncertainties," Applied Energy, Elsevier, vol. 371(C).
    10. Xuan, Ang & Shen, Xinwei & Guo, Qinglai & Sun, Hongbin, 2021. "A conditional value-at-risk based planning model for integrated energy system with energy storage and renewables," Applied Energy, Elsevier, vol. 294(C).
    11. Yang, Zhixue & Ren, Zhouyang & Li, Hui & Sun, Zhiyuan & Feng, Jianbing & Xia, Weiyi, 2024. "A multi-stage stochastic dispatching method for electricity‑hydrogen integrated energy systems driven by model and data," Applied Energy, Elsevier, vol. 371(C).
    12. Jin, Xiaoyu & Liu, Benxi & Liao, Shengli & Cheng, Chuntian & Zhang, Yi & Zhao, Zhipeng & Lu, Jia, 2022. "Wasserstein metric-based two-stage distributionally robust optimization model for optimal daily peak shaving dispatch of cascade hydroplants under renewable energy uncertainties," Energy, Elsevier, vol. 260(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gao, Yuan & Tahir, Mustafa & Siano, Pierluigi & Bi, Yue & Hu, Sile & Yang, Jiaqiang, 2025. "Optimization of renewable energy-based integrated energy systems: A three-stage stochastic robust model," Applied Energy, Elsevier, vol. 377(PD).
    2. Lin, Mohan & Liu, Jia & Tang, Zao & Zhou, Yue & Jiang, Biao & Zeng, Pingliang & Zhou, Xinghua, 2025. "Coordinated DSO-VPP operation framework with energy and reserve integrated from shared energy storage: A mixed game method," Applied Energy, Elsevier, vol. 379(C).
    3. Liu, Benxi & Liu, Tengyuan & Liao, Shengli & Lu, Jia & Cheng, Chuntian, 2023. "Short-term coordinated hybrid hydro-wind-solar optimal scheduling model considering multistage section restrictions," Renewable Energy, Elsevier, vol. 217(C).
    4. Wang, Jiangjiang & Deng, Hongda & Qi, Xiaoling, 2022. "Cost-based site and capacity optimization of multi-energy storage system in the regional integrated energy networks," Energy, Elsevier, vol. 261(PA).
    5. Wang, Jin & Zhao, Zhipeng & Zhou, Jinglin & Cheng, Chuntian & Su, Huaying, 2024. "Co-optimization for day-ahead scheduling and flexibility response mode of a hydro–wind–solar hybrid system considering forecast uncertainty of variable renewable energy," Energy, Elsevier, vol. 311(C).
    6. Shen, Yi & Zhai, Junyi & Kang, Zhongjian & Zhao, Bei & Gao, Xianhui & Li, Zhengmao, 2025. "Distributionally robust chance-constrained energy management for island DC microgrid with offshore wind power hydrogen production," Energy, Elsevier, vol. 316(C).
    7. Sulman Shahzad & Muhammad Abbas Abbasi & Hassan Ali & Muhammad Iqbal & Rania Munir & Heybet Kilic, 2023. "Possibilities, Challenges, and Future Opportunities of Microgrids: A Review," Sustainability, MDPI, vol. 15(8), pages 1-28, April.
    8. Fabio Massaro & Maria Luisa Di Silvestre & Marco Ferraro & Francesco Montana & Eleonora Riva Sanseverino & Salvatore Ruffino, 2024. "Energy Hub Model for the Massive Adoption of Hydrogen in Power Systems," Energies, MDPI, vol. 17(17), pages 1-31, September.
    9. Chen, Lei & Jiang, Yuqi & Zheng, Shencong & Deng, Xinyi & Chen, Hongkun & Islam, Md. Rabiul, 2023. "A two-layer optimal configuration approach of energy storage systems for resilience enhancement of active distribution networks," Applied Energy, Elsevier, vol. 350(C).
    10. Zhu, Yilin & Xu, Yujie & Chen, Haisheng & Guo, Huan & Zhang, Hualiang & Zhou, Xuezhi & Shen, Haotian, 2023. "Optimal dispatch of a novel integrated energy system combined with multi-output organic Rankine cycle and hybrid energy storage," Applied Energy, Elsevier, vol. 343(C).
    11. Wang, Jin & Zhao, Zhipeng & Zhou, Jinglin & Cheng, Chuntian & Su, Huaying, 2024. "Developing operating rules for a hydro–wind–solar hybrid system considering peak-shaving demands," Applied Energy, Elsevier, vol. 360(C).
    12. Beata Kurc & Xymena Gross & Natalia Szymlet & Łukasz Rymaniak & Krystian Woźniak & Marita Pigłowska, 2024. "Hydrogen-Powered Vehicles: A Paradigm Shift in Sustainable Transportation," Energies, MDPI, vol. 17(19), pages 1-38, September.
    13. Junqiu Fan & Jing Zhang & Long Yuan & Rujing Yan & Yu He & Weixing Zhao & Nang Nin, 2024. "Deep Low-Carbon Economic Optimization Using CCUS and Two-Stage P2G with Multiple Hydrogen Utilizations for an Integrated Energy System with a High Penetration Level of Renewables," Sustainability, MDPI, vol. 16(13), pages 1-20, July.
    14. Zhang, Liu & Zhang, Kaitian & Zheng, Zhong & Chai, Yi & Lian, Xiaoyuan & Zhang, Kai & Xu, Zhaojun & Chen, Sujun, 2023. "Two-stage distributionally robust integrated scheduling of oxygen distribution and steelmaking-continuous casting in steel enterprises," Applied Energy, Elsevier, vol. 351(C).
    15. Simona Di Fraia & Rafał Figaj & Musannif Shah & Laura Vanoli, 2024. "Biomass-Driven Polygeneration Coupled to Power-to-X: An Energy and Economic Comparison Between On-Site Electric Vehicle Charging and Hydrogen Production," Energies, MDPI, vol. 17(21), pages 1-24, November.
    16. Wesam M. A. Hamed & Nesrin Özataç, 2024. "Spillover effects of financial development on renewable energy deployment and carbon neutrality: Does GCC institutional quality play a moderating role?," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(11), pages 27351-27374, November.
    17. Duan, Jiandong & Gao, Qi & Xia, Yerui & Tian, Qinxing & Qin, Bo, 2024. "MMD-DRO based economic dispatching considering flexible reserve provision from concentrated solar power plant," Energy, Elsevier, vol. 308(C).
    18. Elkholy, M.H. & Metwally, Hamid & Farahat, M.A. & Senjyu, Tomonobu & Elsayed Lotfy, Mohammed, 2022. "Smart centralized energy management system for autonomous microgrid using FPGA," Applied Energy, Elsevier, vol. 317(C).
    19. Madurai Elavarasan, Rajvikram & Nadarajah, Mithulananthan & Pugazhendhi, Rishi & Sinha, Avik & Gangatharan, Sivasankar & Chiaramonti, David & Abou Houran, Mohamad, 2023. "The untold subtlety of energy consumption and its influence on policy drive towards Sustainable Development Goal 7," Applied Energy, Elsevier, vol. 334(C).
    20. Zhang, Yue & Wu, Qiong & Ren, Hongbo & Li, Qifen & Zhou, Weisheng, 2024. "Optimal operation of multi-microgrid systems considering multi-level energy-certificate-carbon coupling trading," Renewable Energy, Elsevier, vol. 227(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:9:p:1439-:d:1644356. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.