IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v318y2025ics0360544225004803.html
   My bibliography  Save this article

Optimal sizing of Power-to-Ammonia plants: A stochastic two-stage mixed-integer programming approach

Author

Listed:
  • Wang, Shunchao

Abstract

Power-to-ammonia, a process that converts renewable electricity into green ammonia, has emerged as a promising solution for cross-sector decarbonization and large-scale energy storage. Power-to-ammonia plants are a combination of electrolysis, ammonia synthesis, air-separation processes, and multiple storage facilities, each characterized by distinct operational envelopes and cost structures. Sizing optimization of these production and storage modules is one of the most important tasks for the engineering of power-to-ammonia plants. In this paper, this optimal sizing problem is formulated as a two-stage stochastic mixed-integer program, in which the first stage determines the capacity configuration of these modules, while the second stage focuses on scheduling the hourly operations of various modules. The resulting program is challenging to solve due to its size, as a large number of scenarios are required to represent the stochastic renewable generation, and its mathematical structure, owing to the presence of both discrete and continuous variables in two stages. The Benders dual decomposition method is employed as the solution framework. To accelerate the convergence of the Benders dual decomposition method and mitigate its inherent duality gap, a random dissimilarity scenario bundling scheme along with a novel type of optimality cut is proposed. Built on these two elements, an improved Benders dual decomposition method is developed, yielding better lower bounds and higher-quality primal feasible solutions. Computational results show that the proposed method outperforms the Benders dual decomposition method and other classical decomposition methods in both relative gap closing and solution time. Particularly for cases with highly intermittent inputs, the proposed method is the only one that achieves a relative gap lower than 1.0% among all examined decomposition methods. It is also found that the hydrogen storage requirement for inflexible Haber–Bosch reactors can be nearly four times higher than that for flexible reactors, while the total installation cost of power-to-ammonia plants can differ by up to 25%.

Suggested Citation

  • Wang, Shunchao, 2025. "Optimal sizing of Power-to-Ammonia plants: A stochastic two-stage mixed-integer programming approach," Energy, Elsevier, vol. 318(C).
  • Handle: RePEc:eee:energy:v:318:y:2025:i:c:s0360544225004803
    DOI: 10.1016/j.energy.2025.134838
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225004803
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.134838?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Li, Peng & Wang, Jiahao & Li, Canbing & Ma, Hongwei & Liu, Yang & Hou, Lei, 2024. "A two-stage optimal operation strategy for community integrated energy system considering dynamic and static energy characteristics," Energy, Elsevier, vol. 308(C).
    2. Campion, Nicolas & Nami, Hossein & Swisher, Philip R. & Vang Hendriksen, Peter & Münster, Marie, 2023. "Techno-economic assessment of green ammonia production with different wind and solar potentials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    3. Fasihi, Mahdi & Weiss, Robert & Savolainen, Jouni & Breyer, Christian, 2021. "Global potential of green ammonia based on hybrid PV-wind power plants," Applied Energy, Elsevier, vol. 294(C).
    4. Rui Chen & James Luedtke, 2022. "On Generating Lagrangian Cuts for Two-Stage Stochastic Integer Programs," INFORMS Journal on Computing, INFORMS, vol. 34(4), pages 2332-2349, July.
    5. Ruszczynski, Andrzej & Swietanowski, Artur, 1997. "Accelerating the regularized decomposition method for two stage stochastic linear problems," European Journal of Operational Research, Elsevier, vol. 101(2), pages 328-342, September.
    6. Schulte Beerbühl, S. & Fröhling, M. & Schultmann, F., 2015. "Combined scheduling and capacity planning of electricity-based ammonia production to integrate renewable energies," European Journal of Operational Research, Elsevier, vol. 241(3), pages 851-862.
    7. Ragheb Rahmaniani & Shabbir Ahmed & Teodor Gabriel Crainic & Michel Gendreau & Walter Rei, 2020. "The Benders Dual Decomposition Method," Operations Research, INFORMS, vol. 68(3), pages 878-895, May.
    8. Verleysen, Kevin & Parente, Alessandro & Contino, Francesco, 2021. "How sensitive is a dynamic ammonia synthesis process? Global sensitivity analysis of a dynamic Haber-Bosch process (for flexible seasonal energy storage)," Energy, Elsevier, vol. 232(C).
    9. Hanxin Zhao, 2024. "The role of green ammonia in meeting challenges towards a sustainable development in China," Papers 2407.07632, arXiv.org.
    10. Lee, Ha Eun & Ling, Jester Lih Jie & Pae, Kook Pyo & Solanki, Bhanupratap S. & Park, Han Saem & Ahn, Hyung Jun & Seo, Hae Won & Lee, See Hoon, 2024. "Comparative life cycle assessment of carbon-free ammonia as fuel for power generation based on the perspective of supply chains," Energy, Elsevier, vol. 312(C).
    11. Zhao, Hanxin, 2024. "The role of green ammonia in meeting challenges towards a sustainable development in China," Energy, Elsevier, vol. 310(C).
    12. Yang, Zhixue & Ren, Zhouyang & Li, Hui & Sun, Zhiyuan & Feng, Jianbing & Xia, Weiyi, 2024. "A multi-stage stochastic dispatching method for electricity‑hydrogen integrated energy systems driven by model and data," Applied Energy, Elsevier, vol. 371(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Driscoll, Honora & Salmon, Nicholas & Bañares-Alcántara, Rene, 2024. "Exploiting the temporal characteristics of tidal stream power for green ammonia production," Renewable Energy, Elsevier, vol. 226(C).
    2. Pastore, Lorenzo Mario & de Santoli, Livio, 2025. "Socio-economic implications of implementing a carbon-neutral energy system: A Green New Deal for Italy," Energy, Elsevier, vol. 322(C).
    3. Clautiaux, François & Ljubić, Ivana, 2025. "Last fifty years of integer linear programming: A focus on recent practical advances," European Journal of Operational Research, Elsevier, vol. 324(3), pages 707-731.
    4. Campion, Nicolas & Montanari, Giulia & Guzzini, Alessandro & Visser, Lennard & Alcayde, Alfredo, 2025. "Green hydrogen techno-economic assessments from simulated and measured solar photovoltaic power profiles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 209(C).
    5. Stefano Mingolla & Paolo Gabrielli & Alessandro Manzotti & Matthew J. Robson & Kevin Rouwenhorst & Francesco Ciucci & Giovanni Sansavini & Magdalena M. Klemun & Zhongming Lu, 2024. "Effects of emissions caps on the costs and feasibility of low-carbon hydrogen in the European ammonia industry," Nature Communications, Nature, vol. 15(1), pages 1-23, December.
    6. Lan, Penghang & Chen, She & Li, Qihang & Li, Kelin & Wang, Feng & Zhao, Yaoxun & Wang, Tianwei, 2024. "Comparison of different hydrogen-ammonia energy conversion pathways for renewable energy supply," Renewable Energy, Elsevier, vol. 227(C).
    7. Campion, Nicolas & Gutiérrez-Alvarez, Raúl & Bruce, José Tomás Figueroa & Münster, Marie, 2024. "The potential role of concentrated solar power for off-grid green hydrogen and ammonia production," Renewable Energy, Elsevier, vol. 236(C).
    8. Jowkar, Saeed & Zhang, Hengming & Shen, Xing, 2025. "Ammonia/syngas combustion in a premixed micro-gas turbine: LES-FGM investigation on flame dynamics, stability, and emission control," Energy, Elsevier, vol. 320(C).
    9. Novianti Dwi & Kurniawati Ischia & Yonmo Sung, 2025. "Review of Ammonia Oxy-Combustion Technologies: Fundamental Research and Its Various Applications," Energies, MDPI, vol. 18(9), pages 1-44, April.
    10. Liu, Bingqian & Bissuel, Côme & Courtot, François & Gicquel, Céline & Quadri, Dominique, 2024. "A generalized Benders decomposition approach for the optimal design of a local multi-energy system," European Journal of Operational Research, Elsevier, vol. 318(1), pages 43-54.
    11. Qi, Meng & Kim, Minsu & Dat Vo, Nguyen & Yin, Liang & Liu, Yi & Park, Jinwoo & Moon, Il, 2022. "Proposal and surrogate-based cost-optimal design of an innovative green ammonia and electricity co-production system via liquid air energy storage," Applied Energy, Elsevier, vol. 314(C).
    12. Ahumada, Omar & Rene Villalobos, J. & Nicholas Mason, A., 2012. "Tactical planning of the production and distribution of fresh agricultural products under uncertainty," Agricultural Systems, Elsevier, vol. 112(C), pages 17-26.
    13. Lopez, Gabriel & Galimova, Tansu & Fasihi, Mahdi & Bogdanov, Dmitrii & Breyer, Christian, 2023. "Towards defossilised steel: Supply chain options for a green European steel industry," Energy, Elsevier, vol. 273(C).
    14. Xiong, Kang & Hu, Weihao & Cao, Di & Li, Sichen & Zhang, Guozhou & Liu, Wen & Huang, Qi & Chen, Zhe, 2023. "Coordinated energy management strategy for multi-energy hub with thermo-electrochemical effect based power-to-ammonia: A multi-agent deep reinforcement learning enabled approach," Renewable Energy, Elsevier, vol. 214(C), pages 216-232.
    15. Kuttner, Leopold, 2022. "Integrated scheduling and bidding of power and reserve of energy resource aggregators with storage plants," Applied Energy, Elsevier, vol. 321(C).
    16. Yan Lu & Bo Ning & Pengyun Geng & Yan Li & Jiajie Kong, 2025. "Research on the Current Status and Key Issues of China’s Green Electricity Trading Development," Energies, MDPI, vol. 18(7), pages 1-21, March.
    17. Ge, Pingxu & Tang, Daogui & Yuan, Yuji & Guerrero, Josep M. & Zio, Enrico, 2025. "A hierarchical multi-objective co-optimization framework for sizing and energy management of coupled hydrogen-electricity energy storage systems at ports," Applied Energy, Elsevier, vol. 384(C).
    18. Keyong Hu & Qingqing Yang & Lei Lu & Yu Zhang & Shuifa Sun & Ben Wang, 2025. "Two-Stage Distributionally Robust Optimal Scheduling for Integrated Energy Systems Considering Uncertainties in Renewable Generation and Loads," Mathematics, MDPI, vol. 13(9), pages 1-30, April.
    19. Moosazadeh, Mohammad & Mansourimarand, Asal & Ajori, Shahram & Taghikhani, Vahid & Yoo, ChangKyoo, 2025. "Waste-to-Ammonia: A sustainable pathway for energy transition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 208(C).
    20. Maqsood, Imran & Huang, Guo H. & Scott Yeomans, Julian, 2005. "An interval-parameter fuzzy two-stage stochastic program for water resources management under uncertainty," European Journal of Operational Research, Elsevier, vol. 167(1), pages 208-225, November.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:318:y:2025:i:c:s0360544225004803. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.