IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i13p5766-d1685361.html
   My bibliography  Save this article

Quantitative Assessment of Coal Phaseouts and Retrofit Deployments for Low-Carbon Transition Pathways in China’s Coal Power Sector

Author

Listed:
  • Xinxu Zhao

    (China Power Engineering Consulting Corporation, Beijing 100012, China
    State Key Lab of Clean Energy Utilization, Institute of Carbon Neutrality, State Environmental Protection Engineering Center for Coal-Fired Air Pollution Control, Zhejiang University, Hangzhou 310000, China)

  • Li Zhang

    (China Power Engineering Consulting Corporation, Beijing 100012, China)

  • Xutao Wang

    (Huadian Electric Power Research Institute Co., Ltd., Hangzhou 310000, China)

  • Kun Wang

    (TUM School of Computation, Information and Technology, Technical University of Munich, 80937 Garching bei München, Germany)

  • Jun Pan

    (China Power Engineering Consulting Corporation, Beijing 100012, China
    These authors contributed equally to this work.)

  • Xin Tian

    (China Power Engineering Consulting Corporation, Beijing 100012, China
    These authors contributed equally to this work.)

  • Liming Yang

    (China Power Engineering Consulting Corporation, Beijing 100012, China
    These authors contributed equally to this work.)

  • Yaoxuan Wang

    (China Power Engineering Consulting Corporation, Beijing 100012, China
    These authors contributed equally to this work.)

  • Yu Ni

    (China Power Engineering Consulting Corporation, Beijing 100012, China
    These authors contributed equally to this work.)

  • Chenghang Zheng

    (State Key Lab of Clean Energy Utilization, Institute of Carbon Neutrality, State Environmental Protection Engineering Center for Coal-Fired Air Pollution Control, Zhejiang University, Hangzhou 310000, China)

Abstract

Accelerating the low-carbon transition of China’s coal-fired power sector is essential for advancing national sustainability goals and fulfilling global climate commitments. This study introduces an integrated, data-driven analytical framework to facilitate the sustainable transformation of the coal power sector through coordinated unit-level retirements, new capacity planning, and targeted retrofits. By combining a comprehensive unit-level database with a multi-criteria evaluation framework, the analysis incorporates environmental, technical, and economic factors into decision-making for retirement scheduling. Scenario analyses based on the China Energy Transformation Outlook (CETO 2024) delineate both baseline and ideal carbon neutrality pathways. Optimization algorithms are employed to identify cost-effective retrofit strategies or portfolios, minimizing levelized carbon reduction costs. The findings reveal that cumulative emissions can be reduced by 10–14.9 GtCO 2 by 2060, with advanced technologies like CCUS and co-firing contributing over half of retrofit-driven mitigation. The estimated transition cost of 6.2–6.7 trillion CNY underscores the scale of sustainable investment required. Sensitivity analyses further highlight the critical role of reducing green hydrogen costs to enable deep decarbonization. Overall, this study provides a robust and replicable planning tool to support policymakers in formulating strategies that align coal power sector transformation with long-term sustainability and China’s carbon neutrality commitments.

Suggested Citation

  • Xinxu Zhao & Li Zhang & Xutao Wang & Kun Wang & Jun Pan & Xin Tian & Liming Yang & Yaoxuan Wang & Yu Ni & Chenghang Zheng, 2025. "Quantitative Assessment of Coal Phaseouts and Retrofit Deployments for Low-Carbon Transition Pathways in China’s Coal Power Sector," Sustainability, MDPI, vol. 17(13), pages 1-31, June.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:13:p:5766-:d:1685361
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/13/5766/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/13/5766/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xizhe Yan & Dan Tong & Yixuan Zheng & Yang Liu & Shaoqing Chen & Xinying Qin & Chuchu Chen & Ruochong Xu & Jing Cheng & Qinren Shi & Dongsheng Zheng & Kebin He & Qiang Zhang & Yu Lei, 2024. "Cost-effectiveness uncertainty may bias the decision of coal power transitions in China," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. Shen, Bo & Hove, Anders & Hu, Junfeng & Dupuy, Max & Bregnbæk, Lars & Zhang, Yuejun & Zhang, Ning, 2024. "Coping with power crises under decarbonization: The case of China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 193(C).
    3. Dan Tong & Guannan Geng & Qiang Zhang & Jing Cheng & Xinying Qin & Chaopeng Hong & Kebin He & Steven J. Davis, 2021. "Health co-benefits of climate change mitigation depend on strategic power plant retirements and pollution controls," Nature Climate Change, Nature, vol. 11(12), pages 1077-1083, December.
    4. Wu, Di & Zhang, Yuqian & Liu, Bo & Wang, Keke & Wang, Zijing & Kang, Junjie, 2024. "Optimization of coal power phaseout pathways ensuring energy security: Evidence from Shandong, China's largest coal power province," Energy Policy, Elsevier, vol. 192(C).
    5. Zhao, Hanxin, 2024. "The role of green ammonia in meeting challenges towards a sustainable development in China," Energy, Elsevier, vol. 310(C).
    6. Wang, Xutao & Zhao, Xinxu & Yang, Yang & Shao, Yuhao & Zhang, Li & Ni, Yu & Pan, Jun & Zhang, Yongxin & Zheng, Chenghang & Gao, Xiang, 2024. "Comprehensive analysis of carbon emission reduction technologies (CRTs) in China's coal-fired power sector: A bottom-up approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).
    7. Zhao, Changhong & Zhang, Weirong & Wang, Yang & Liu, Qilin & Guo, Jingsheng & Xiong, Minpeng & Yuan, Jiahai, 2017. "The economics of coal power generation in China," Energy Policy, Elsevier, vol. 105(C), pages 1-9.
    8. Han Wang & Wenjuan Dong & Hongji Li & Ershun Du, 2023. "Investment Estimation in the Energy and Power Sector towards Carbon Neutrality Target: A Case Study of China," Sustainability, MDPI, vol. 15(5), pages 1-14, March.
    9. Jing-Li Fan & Jingying Fu & Xian Zhang & Kai Li & Wenlong Zhou & Klaus Hubacek & Johannes Urpelainen & Shuo Shen & Shiyan Chang & Siyue Guo & Xi Lu, 2023. "Co-firing plants with retrofitted carbon capture and storage for power-sector emissions mitigation," Nature Climate Change, Nature, vol. 13(8), pages 807-815, August.
    10. Huan Wang & Wenying Chen & Hongjun Zhang & Nan Li, 2020. "Modeling of power sector decarbonization in China: comparisons of early and delayed mitigation towards 2-degree target," Climatic Change, Springer, vol. 162(4), pages 1843-1856, October.
    11. Rui Wang & Wenjia Cai & Ryna Yiyun Cui & Lin Huang & Weidong Ma & Binbin Qi & Jia Zhang & Jiang Bian & Haoran Li & Shihui Zhang & Jianxiang Shen & Xian Zhang & Jiutian Zhang & Wei Li & Le Yu & Ning Zh, 2025. "Reducing transition costs towards carbon neutrality of China’s coal power plants," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    12. Hanxin Zhao, 2024. "The role of green ammonia in meeting challenges towards a sustainable development in China," Papers 2407.07632, arXiv.org.
    13. Lin, Boqiang & Liu, Zhiwei, 2024. "Optimal coal power phase-out pathway considering high renewable energy proportion: A provincial example," Energy Policy, Elsevier, vol. 188(C).
    14. Zhang, Yun-Long & Kang, Jia-Ning & Liu, Lan-Cui & Wei, Yi-Ming, 2024. "Unveiling the evolution and future prospects: A comprehensive review of low-carbon transition in the coal power industry," Applied Energy, Elsevier, vol. 371(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Shunchao, 2025. "Optimal sizing of Power-to-Ammonia plants: A stochastic two-stage mixed-integer programming approach," Energy, Elsevier, vol. 318(C).
    2. Jowkar, Saeed & Zhang, Hengming & Shen, Xing, 2025. "Ammonia/syngas combustion in a premixed micro-gas turbine: LES-FGM investigation on flame dynamics, stability, and emission control," Energy, Elsevier, vol. 320(C).
    3. Rui Wang & Wenjia Cai & Ryna Yiyun Cui & Lin Huang & Weidong Ma & Binbin Qi & Jia Zhang & Jiang Bian & Haoran Li & Shihui Zhang & Jianxiang Shen & Xian Zhang & Jiutian Zhang & Wei Li & Le Yu & Ning Zh, 2025. "Reducing transition costs towards carbon neutrality of China’s coal power plants," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    4. Zhang, Jing & Liu, Yu & Yang, Lingyu & Zhang, Jinzhu & Li, Xinbei, 2025. "An assessment of the effectiveness of CCS technology incentive policies based on dynamic CGE model," Energy Policy, Elsevier, vol. 198(C).
    5. Zhang, Yun-Long & Kang, Jia-Ning & Liu, Lan-Cui & Wei, Yi-Ming, 2024. "Unveiling the evolution and future prospects: A comprehensive review of low-carbon transition in the coal power industry," Applied Energy, Elsevier, vol. 371(C).
    6. Ren, Jinhui & Zhang, Qianzhi & Chen, Wenying, 2024. "China's provincial power decarbonization transition in a carbon neutral vision," Energy, Elsevier, vol. 310(C).
    7. Novianti Dwi & Kurniawati Ischia & Yonmo Sung, 2025. "Review of Ammonia Oxy-Combustion Technologies: Fundamental Research and Its Various Applications," Energies, MDPI, vol. 18(9), pages 1-44, April.
    8. Pastore, Lorenzo Mario & de Santoli, Livio, 2025. "Socio-economic implications of implementing a carbon-neutral energy system: A Green New Deal for Italy," Energy, Elsevier, vol. 322(C).
    9. Kangxin An & Xinzhu Zheng & Jianxiang Shen & Canyang Xie & Can Wang & Wenjia Cai & Chujie Bu, 2025. "Repositioning coal power to accelerate net-zero transition of China’s power system," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    10. Wang, Delu & Mao, Jinqi & Shi, Xunpeng & Li, Chunxiao & Chen, Fan, 2024. "A planning model for coal power exit scales based on minimizing idle and shortage losses: A case study of China," Energy Economics, Elsevier, vol. 138(C).
    11. Qingxian Jia, 2023. "The impact of green finance on the level of decarbonization of the economies: An analysis of the United States', China's, and Russia's current agenda," Business Strategy and the Environment, Wiley Blackwell, vol. 32(1), pages 110-119, January.
    12. Wilhelm Jan Tic & Joanna Guziałowska-Tic, 2019. "The Effect of Modifiers and Method of Application on Fine-Coal Combustion," Energies, MDPI, vol. 12(23), pages 1-15, November.
    13. Li, Jin & Wang, Rui & Li, Haoran & Nie, Yaoyu & Song, Xinke & Li, Mingyu & Shi, Mai & Zheng, Xinzhu & Cai, Wenjia & Wang, Can, 2021. "Unit-level cost-benefit analysis for coal power plants retrofitted with biomass co-firing at a national level by combined GIS and life cycle assessment," Applied Energy, Elsevier, vol. 285(C).
    14. Yan Xu & Junjie Kang & Jiahai Yuan, 2018. "The Prospective of Nuclear Power in China," Sustainability, MDPI, vol. 10(6), pages 1-21, June.
    15. HuiHui Liu & ZhongXiang Zhang & ZhanMing Chen & DeSheng Dou, 2018. "The Impact of China’s Electricity Deregulation on Coal and Power Industries: Two-stage Game Modeling Approach," Working Papers 2018.17, Fondazione Eni Enrico Mattei.
    16. Li, Zezheng & Yu, Pengwei & Xian, Yujiao & Fan, Jing-Li, 2024. "Investment benefit analysis of coal-to-hydrogen coupled CCS technology in China based on real option approach," Energy, Elsevier, vol. 294(C).
    17. Pan, Xunzhang & Ma, Xueqing & Zhang, Yanru & Shao, Tianming & Peng, Tianduo & Li, Xiang & Wang, Lining & Chen, Wenying, 2023. "Implications of carbon neutrality for power sector investments and stranded coal assets in China," Energy Economics, Elsevier, vol. 121(C).
    18. Belen Moreno Santamaria & Fernando del Ama Gonzalo & Matthew Griffin & Benito Lauret Aguirregabiria & Juan A. Hernandez Ramos, 2021. "Life Cycle Assessment of Dynamic Water Flow Glazing Envelopes: A Case Study with Real Test Facilities," Energies, MDPI, vol. 14(8), pages 1-17, April.
    19. Ma, Runzhuo & Bu, Siqi, 2025. "Evaluation and mitigation of carbon emissions in energy industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 212(C).
    20. Lin, Boqiang & Liu, Zhiwei, 2024. "Assessment of flexible coal power and battery energy storage system in supporting renewable energy," Energy, Elsevier, vol. 313(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:13:p:5766-:d:1685361. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.