IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v232y2021ics0360544221012640.html
   My bibliography  Save this article

How sensitive is a dynamic ammonia synthesis process? Global sensitivity analysis of a dynamic Haber-Bosch process (for flexible seasonal energy storage)

Author

Listed:
  • Verleysen, Kevin
  • Parente, Alessandro
  • Contino, Francesco

Abstract

The transition towards a sustainable energy sector depends on how we safely manage the transport and storage of energy to keep up with the demand. Large storage (TWh) of renewable energy can be accomplished by producing an energy carrier like ammonia. This power-to-ammonia production process overly depends on the stability of the ammonia reactor where any variations induced by uncertainties could have a large impact on the performance during its dynamic operations. To determine the effect of these variations, we need to identify which of the uncertainties have to be scrutinized during model design. The current work carries out the development of a dynamic Haber-Bosch process, implementing uncertainties in the model and performing an uncertainty quantification analysis on the process. Subsequently, the sensitivity indices quantify the impact of these uncertainties on the design during ramp-up. The global sensitivity analysis indicated that the reactor inlet temperature has the most considerable impact on the performance during ramp-up, where the hydrogen/nitrogen ratio has the second most significant impact. We see that the uncertainty on the reactor inlet temperature dominates (87.8%) the overall standard deviation of the ammonia production. More precise control over the inlet temperature could reduce this impact on the standard deviation. The work can be extended by including a hydrogen and nitrogen production process while powering the full process with renewable power. We can then measure the effect of coupling renewables directly to the dynamic power-to-ammonia process and optimize the design under uncertainty.

Suggested Citation

  • Verleysen, Kevin & Parente, Alessandro & Contino, Francesco, 2021. "How sensitive is a dynamic ammonia synthesis process? Global sensitivity analysis of a dynamic Haber-Bosch process (for flexible seasonal energy storage)," Energy, Elsevier, vol. 232(C).
  • Handle: RePEc:eee:energy:v:232:y:2021:i:c:s0360544221012640
    DOI: 10.1016/j.energy.2021.121016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221012640
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.121016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dimov, I. & Georgieva, R., 2010. "Monte Carlo algorithms for evaluating Sobol’ sensitivity indices," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 81(3), pages 506-514.
    2. Frattini, D. & Cinti, G. & Bidini, G. & Desideri, U. & Cioffi, R. & Jannelli, E., 2016. "A system approach in energy evaluation of different renewable energies sources integration in ammonia production plants," Renewable Energy, Elsevier, vol. 99(C), pages 472-482.
    3. Coppitters, Diederik & De Paepe, Ward & Contino, Francesco, 2019. "Surrogate-assisted robust design optimization and global sensitivity analysis of a directly coupled photovoltaic-electrolyzer system under techno-economic uncertainty," Applied Energy, Elsevier, vol. 248(C), pages 310-320.
    4. Morgan, Eric & Manwell, James & McGowan, Jon, 2014. "Wind-powered ammonia fuel production for remote islands: A case study," Renewable Energy, Elsevier, vol. 72(C), pages 51-61.
    5. Haro Sandoval, Eduardo & Anstett-Collin, Floriane & Basset, Michel, 2012. "Sensitivity study of dynamic systems using polynomial chaos," Reliability Engineering and System Safety, Elsevier, vol. 104(C), pages 15-26.
    6. Coppitters, Diederik & De Paepe, Ward & Contino, Francesco, 2020. "Robust design optimization and stochastic performance analysis of a grid-connected photovoltaic system with battery storage and hydrogen storage," Energy, Elsevier, vol. 213(C).
    7. Limpens, Gauthier & Jeanmart, Hervé, 2018. "Electricity storage needs for the energy transition: An EROI based analysis illustrated by the case of Belgium," Energy, Elsevier, vol. 152(C), pages 960-973.
    8. Blatman, Géraud & Sudret, Bruno, 2010. "Efficient computation of global sensitivity indices using sparse polynomial chaos expansions," Reliability Engineering and System Safety, Elsevier, vol. 95(11), pages 1216-1229.
    9. Flórez-Orrego, Daniel & de Oliveira Junior, Silvio, 2017. "Modeling and optimization of an industrial ammonia synthesis unit: An exergy approach," Energy, Elsevier, vol. 137(C), pages 234-250.
    10. Rouwenhorst, Kevin H.R. & Van der Ham, Aloijsius G.J. & Mul, Guido & Kersten, Sascha R.A., 2019. "Islanded ammonia power systems: Technology review & conceptual process design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hunt, Julian David & Nascimento, Andreas & Zakeri, Behnam & Barbosa, Paulo Sérgio Franco, 2022. "Hydrogen Deep Ocean Link: a global sustainable interconnected energy grid," Energy, Elsevier, vol. 249(C).
    2. Sun, Yang & Ahmadi, Younes & Kim, Ki-Hyun & Lee, Jechan, 2022. "The use of bismuth-based photocatalysts for the production of ammonia through photocatalytic nitrogen fixation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    3. Qi, Meng & Kim, Minsu & Dat Vo, Nguyen & Yin, Liang & Liu, Yi & Park, Jinwoo & Moon, Il, 2022. "Proposal and surrogate-based cost-optimal design of an innovative green ammonia and electricity co-production system via liquid air energy storage," Applied Energy, Elsevier, vol. 314(C).
    4. Coppitters, Diederik & Verleysen, Kevin & De Paepe, Ward & Contino, Francesco, 2022. "How can renewable hydrogen compete with diesel in public transport? Robust design optimization of a hydrogen refueling station under techno-economic and environmental uncertainty," Applied Energy, Elsevier, vol. 312(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jonathan Dumas & Antoine Dubois & Paolo Thiran & Pierre Jacques & Francesco Contino & Bertrand Cornélusse & Gauthier Limpens, 2022. "The Energy Return on Investment of Whole-Energy Systems: Application to Belgium," Biophysical Economics and Resource Quality, Springer, vol. 7(4), pages 1-34, December.
    2. Sibdari, Soheil & Mohammadian, Iman & Pyke, David F., 2018. "On the impact of jet fuel cost on airlines’ capacity choice: Evidence from the U.S. domestic markets," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 111(C), pages 1-17.
    3. Zhai, Qingqing & Yang, Jun & Zhao, Yu, 2014. "Space-partition method for the variance-based sensitivity analysis: Optimal partition scheme and comparative study," Reliability Engineering and System Safety, Elsevier, vol. 131(C), pages 66-82.
    4. Oladyshkin, S. & Nowak, W., 2012. "Data-driven uncertainty quantification using the arbitrary polynomial chaos expansion," Reliability Engineering and System Safety, Elsevier, vol. 106(C), pages 179-190.
    5. Àlex Alonso-Travesset & Diederik Coppitters & Helena Martín & Jordi de la Hoz, 2023. "Economic and Regulatory Uncertainty in Renewable Energy System Design: A Review," Energies, MDPI, vol. 16(2), pages 1-30, January.
    6. Wang, Jing & Kang, Lixia & Huang, Xiankun & Liu, Yongzhong, 2021. "An analysis framework for quantitative evaluation of parametric uncertainty in a cooperated energy storage system with multiple energy carriers," Energy, Elsevier, vol. 226(C).
    7. Linda Barelli & Gianni Bidini & Giovanni Cinti, 2020. "Operation of a Solid Oxide Fuel Cell Based Power System with Ammonia as a Fuel: Experimental Test and System Design," Energies, MDPI, vol. 13(23), pages 1-19, November.
    8. Fasihi, Mahdi & Weiss, Robert & Savolainen, Jouni & Breyer, Christian, 2021. "Global potential of green ammonia based on hybrid PV-wind power plants," Applied Energy, Elsevier, vol. 294(C).
    9. Cinti, Giovanni & Frattini, Domenico & Jannelli, Elio & Desideri, Umberto & Bidini, Gianni, 2017. "Coupling Solid Oxide Electrolyser (SOE) and ammonia production plant," Applied Energy, Elsevier, vol. 192(C), pages 466-476.
    10. Xavier Rixhon & Gauthier Limpens & Diederik Coppitters & Hervé Jeanmart & Francesco Contino, 2021. "The Role of Electrofuels under Uncertainties for the Belgian Energy Transition," Energies, MDPI, vol. 14(13), pages 1-23, July.
    11. Ali Mostafaeipour & Ali Sadeghi Sedeh & Shahariar Chowdhury & Kuaanan Techato, 2020. "Ranking Potential Renewable Energy Systems to Power On-Farm Fertilizer Production," Sustainability, MDPI, vol. 12(19), pages 1-27, September.
    12. Qi, Meng & Kim, Minsu & Dat Vo, Nguyen & Yin, Liang & Liu, Yi & Park, Jinwoo & Moon, Il, 2022. "Proposal and surrogate-based cost-optimal design of an innovative green ammonia and electricity co-production system via liquid air energy storage," Applied Energy, Elsevier, vol. 314(C).
    13. Coppitters, Diederik & Verleysen, Kevin & De Paepe, Ward & Contino, Francesco, 2022. "How can renewable hydrogen compete with diesel in public transport? Robust design optimization of a hydrogen refueling station under techno-economic and environmental uncertainty," Applied Energy, Elsevier, vol. 312(C).
    14. Coppitters, Diederik & De Paepe, Ward & Contino, Francesco, 2021. "Robust design optimization of a photovoltaic-battery-heat pump system with thermal storage under aleatory and epistemic uncertainty," Energy, Elsevier, vol. 229(C).
    15. Ayaz, S.Kagan & Altuntas, Onder & Caliskan, Hakan, 2021. "Enhanced life cycle modelling of a micro gas turbine fuelled with various fuels for sustainable electricity production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    16. Chen, Yuhong & Lyu, Yanfeng & Yang, Xiangdong & Zhang, Xiaohong & Pan, Hengyu & Wu, Jun & Lei, Yongjia & Zhang, Yanzong & Wang, Guiyin & Xu, Min & Luo, Hongbin, 2022. "Performance comparison of urea production using one set of integrated indicators considering energy use, economic cost and emissions’ impacts: A case from China," Energy, Elsevier, vol. 254(PC).
    17. Ahmad Alzahrani & Senthil Kumar Ramu & Gunapriya Devarajan & Indragandhi Vairavasundaram & Subramaniyaswamy Vairavasundaram, 2022. "A Review on Hydrogen-Based Hybrid Microgrid System: Topologies for Hydrogen Energy Storage, Integration, and Energy Management with Solar and Wind Energy," Energies, MDPI, vol. 15(21), pages 1-32, October.
    18. Wu, Fang-Hsien & Chen, Guan-Bang, 2020. "Numerical study of hydrogen peroxide enhancement of ammonia premixed flames," Energy, Elsevier, vol. 209(C).
    19. Sara Bellocchi & Michele Manno & Michel Noussan & Michela Vellini, 2019. "Impact of Grid-Scale Electricity Storage and Electric Vehicles on Renewable Energy Penetration: A Case Study for Italy," Energies, MDPI, vol. 12(7), pages 1-32, April.
    20. Cao, Jiaokun & Du, Farong & Ding, Shuiting, 2013. "Global sensitivity analysis for dynamic systems with stochastic input processes," Reliability Engineering and System Safety, Elsevier, vol. 118(C), pages 106-117.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:232:y:2021:i:c:s0360544221012640. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.