IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v104y2012icp15-26.html
   My bibliography  Save this article

Sensitivity study of dynamic systems using polynomial chaos

Author

Listed:
  • Haro Sandoval, Eduardo
  • Anstett-Collin, Floriane
  • Basset, Michel

Abstract

Global sensitivity has mainly been analyzed in static models, though most physical systems can be described by differential equations. Very few approaches have been proposed for the sensitivity of dynamic models and the only ones are local. Nevertheless, it would be of great interest to consider the entire uncertainty range of parameters since they can vary within large intervals depending on their meaning. Other advantage of global analysis is that the sensitivity indices of a given parameter are evaluated while all the other parameters can be varied. In this way, the relative variability of each parameter is taken into account, revealing any possible interactions. This paper presents the global sensitivity analysis for dynamic models with an original approach based on the polynomial chaos (PC) expansion of the output. The evaluation of the PC expansion of the output is less expensive compared to direct simulations. Moreover, at each time instant, the coefficients of the PC decomposition convey the parameter sensitivity and then a sensitivity function can be obtained. The PC coefficients are determined using non-intrusive methods. The proposed approach is illustrated with some well-known dynamic systems.

Suggested Citation

  • Haro Sandoval, Eduardo & Anstett-Collin, Floriane & Basset, Michel, 2012. "Sensitivity study of dynamic systems using polynomial chaos," Reliability Engineering and System Safety, Elsevier, vol. 104(C), pages 15-26.
  • Handle: RePEc:eee:reensy:v:104:y:2012:i:c:p:15-26
    DOI: 10.1016/j.ress.2012.04.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832012000671
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2012.04.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sudret, Bruno, 2008. "Global sensitivity analysis using polynomial chaos expansions," Reliability Engineering and System Safety, Elsevier, vol. 93(7), pages 964-979.
    2. Crestaux, Thierry & Le Maıˆtre, Olivier & Martinez, Jean-Marc, 2009. "Polynomial chaos expansion for sensitivity analysis," Reliability Engineering and System Safety, Elsevier, vol. 94(7), pages 1161-1172.
    3. Marco Ratto & Andrea Pagano, 2010. "Using recursive algorithms for the efficient identification of smoothing spline ANOVA models," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 94(4), pages 367-388, December.
    4. Blatman, Géraud & Sudret, Bruno, 2010. "Efficient computation of global sensitivity indices using sparse polynomial chaos expansions," Reliability Engineering and System Safety, Elsevier, vol. 95(11), pages 1216-1229.
    5. Borgonovo, E., 2007. "A new uncertainty importance measure," Reliability Engineering and System Safety, Elsevier, vol. 92(6), pages 771-784.
    6. Dirk J.W. De Pauw & Peter A. Vanrolleghem, 2006. "Practical aspects of sensitivity function approximation for dynamic models," Mathematical and Computer Modelling of Dynamical Systems, Taylor & Francis Journals, vol. 12(5), pages 395-414, October.
    7. Jacques, Julien & Lavergne, Christian & Devictor, Nicolas, 2006. "Sensitivity analysis in presence of model uncertainty and correlated inputs," Reliability Engineering and System Safety, Elsevier, vol. 91(10), pages 1126-1134.
    8. Rahman, Sharif, 2011. "Global sensitivity analysis by polynomial dimensional decomposition," Reliability Engineering and System Safety, Elsevier, vol. 96(7), pages 825-837.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yicheng Zhou & Zhenzhou Lu & Yan Shi & Kai Cheng, 2019. "A vine copula–based method for analyzing the moment-independent importance measure of the multivariate output," Journal of Risk and Reliability, , vol. 233(3), pages 338-354, June.
    2. Oladyshkin, S. & Nowak, W., 2012. "Data-driven uncertainty quantification using the arbitrary polynomial chaos expansion," Reliability Engineering and System Safety, Elsevier, vol. 106(C), pages 179-190.
    3. Oladyshkin, Sergey & Nowak, Wolfgang, 2018. "Incomplete statistical information limits the utility of high-order polynomial chaos expansions," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 137-148.
    4. Tang, Zhang-Chun & Zuo, Ming J. & Xiao, Ningcong, 2016. "An efficient method for evaluating the effect of input parameters on the integrity of safety systems," Reliability Engineering and System Safety, Elsevier, vol. 145(C), pages 111-123.
    5. Zhai, Qingqing & Yang, Jun & Zhao, Yu, 2014. "Space-partition method for the variance-based sensitivity analysis: Optimal partition scheme and comparative study," Reliability Engineering and System Safety, Elsevier, vol. 131(C), pages 66-82.
    6. Cao, Jiaokun & Du, Farong & Ding, Shuiting, 2013. "Global sensitivity analysis for dynamic systems with stochastic input processes," Reliability Engineering and System Safety, Elsevier, vol. 118(C), pages 106-117.
    7. Verleysen, Kevin & Parente, Alessandro & Contino, Francesco, 2021. "How sensitive is a dynamic ammonia synthesis process? Global sensitivity analysis of a dynamic Haber-Bosch process (for flexible seasonal energy storage)," Energy, Elsevier, vol. 232(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anstett-Collin, F. & Goffart, J. & Mara, T. & Denis-Vidal, L., 2015. "Sensitivity analysis of complex models: Coping with dynamic and static inputs," Reliability Engineering and System Safety, Elsevier, vol. 134(C), pages 268-275.
    2. Wu, Zeping & Wang, Wenjie & Wang, Donghui & Zhao, Kun & Zhang, Weihua, 2019. "Global sensitivity analysis using orthogonal augmented radial basis function," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 291-302.
    3. Daneshkhah, Alireza & Bedford, Tim, 2013. "Probabilistic sensitivity analysis of system availability using Gaussian processes," Reliability Engineering and System Safety, Elsevier, vol. 112(C), pages 82-93.
    4. Barry Anderson & Emanuele Borgonovo & Marzio Galeotti & Roberto Roson, 2014. "Uncertainty in Climate Change Modeling: Can Global Sensitivity Analysis Be of Help?," Risk Analysis, John Wiley & Sons, vol. 34(2), pages 271-293, February.
    5. Zhai, Qingqing & Yang, Jun & Zhao, Yu, 2014. "Space-partition method for the variance-based sensitivity analysis: Optimal partition scheme and comparative study," Reliability Engineering and System Safety, Elsevier, vol. 131(C), pages 66-82.
    6. Brown, S. & Beck, J. & Mahgerefteh, H. & Fraga, E.S., 2013. "Global sensitivity analysis of the impact of impurities on CO2 pipeline failure," Reliability Engineering and System Safety, Elsevier, vol. 115(C), pages 43-54.
    7. Zhang, Xufang & Pandey, Mahesh D., 2014. "An effective approximation for variance-based global sensitivity analysis," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 164-174.
    8. Chen, Xin & Molina-Cristóbal, Arturo & Guenov, Marin D. & Riaz, Atif, 2019. "Efficient method for variance-based sensitivity analysis," Reliability Engineering and System Safety, Elsevier, vol. 181(C), pages 97-115.
    9. Melito, Gian Marco & Müller, Thomas Stephan & Badeli, Vahid & Ellermann, Katrin & Brenn, Günter & Reinbacher-Köstinger, Alice, 2021. "Sensitivity analysis study on the effect of the fluid mechanics assumptions for the computation of electrical conductivity of flowing human blood," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    10. Oladyshkin, S. & Nowak, W., 2012. "Data-driven uncertainty quantification using the arbitrary polynomial chaos expansion," Reliability Engineering and System Safety, Elsevier, vol. 106(C), pages 179-190.
    11. Wu, Zeping & Wang, Donghui & Okolo N, Patrick & Hu, Fan & Zhang, Weihua, 2016. "Global sensitivity analysis using a Gaussian Radial Basis Function metamodel," Reliability Engineering and System Safety, Elsevier, vol. 154(C), pages 171-179.
    12. Dubreuil, S. & Berveiller, M. & Petitjean, F. & Salaün, M., 2014. "Construction of bootstrap confidence intervals on sensitivity indices computed by polynomial chaos expansion," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 263-275.
    13. Wei, Pengfei & Lu, Zhenzhou & Song, Jingwen, 2015. "Variable importance analysis: A comprehensive review," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 399-432.
    14. Cremona, Marzia A. & Liu, Binbin & Hu, Yang & Bruni, Stefano & Lewis, Roger, 2016. "Predicting railway wheel wear under uncertainty of wear coefficient, using universal kriging," Reliability Engineering and System Safety, Elsevier, vol. 154(C), pages 49-59.
    15. Alexanderian, Alen & Gremaud, Pierre A. & Smith, Ralph C., 2020. "Variance-based sensitivity analysis for time-dependent processes," Reliability Engineering and System Safety, Elsevier, vol. 196(C).
    16. Steiner, M. & Bourinet, J.-M. & Lahmer, T., 2019. "An adaptive sampling method for global sensitivity analysis based on least-squares support vector regression," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 323-340.
    17. Beccacece, Francesca & Borgonovo, Emanuele & Buzzard, Greg & Cillo, Alessandra & Zionts, Stanley, 2015. "Elicitation of multiattribute value functions through high dimensional model representations: Monotonicity and interactions," European Journal of Operational Research, Elsevier, vol. 246(2), pages 517-527.
    18. Girard, Sylvain & Romary, Thomas & Favennec, Jean-Melaine & Stabat, Pascal & Wackernagel, Hans, 2013. "Sensitivity analysis and dimension reduction of a steam generator model for clogging diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 113(C), pages 143-153.
    19. Palar, Pramudita Satria & Zuhal, Lavi Rizki & Shimoyama, Koji & Tsuchiya, Takeshi, 2018. "Global sensitivity analysis via multi-fidelity polynomial chaos expansion," Reliability Engineering and System Safety, Elsevier, vol. 170(C), pages 175-190.
    20. Konakli, Katerina & Sudret, Bruno, 2016. "Global sensitivity analysis using low-rank tensor approximations," Reliability Engineering and System Safety, Elsevier, vol. 156(C), pages 64-83.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:104:y:2012:i:c:p:15-26. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.