IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v371y2024ics0306261924010511.html
   My bibliography  Save this article

A multi-stage stochastic dispatching method for electricity‑hydrogen integrated energy systems driven by model and data

Author

Listed:
  • Yang, Zhixue
  • Ren, Zhouyang
  • Li, Hui
  • Sun, Zhiyuan
  • Feng, Jianbing
  • Xia, Weiyi

Abstract

To balance the competing interests between economy, security, and computational burden caused by the uncertainty of the electricity‑hydrogen integrated energy systems (EH-IESs), a multi-stage coordinated dispatching framework of “day-ahead deterministic dispatching - online security monitoring - intra-day flexible correction” is proposed. The flexibility of the hydrogen energy system is fully exploited and incorporated into the day-ahead dispatching model. To online monitor the future security of the EH-IESs operation in an uncertain environment, a security monitoring method is proposed by combining deep learning and Monte Carlo simulation. The predetermined dispatching scheme may not ensure the security of system operation due to the uncertain output of renewable energy. Thus, an intra-day correction method based on a chance-constrained model and multi-agent deep reinforcement learning is established to determine the correction scheme. Finally, the numerical experiments based on IEEE 57-bus and IEEE 118-bus test systems validate that the proposed method can not only ensure the security of the system but also reduce the economic cost by about 7% and the computational burden by 99%.

Suggested Citation

  • Yang, Zhixue & Ren, Zhouyang & Li, Hui & Sun, Zhiyuan & Feng, Jianbing & Xia, Weiyi, 2024. "A multi-stage stochastic dispatching method for electricity‑hydrogen integrated energy systems driven by model and data," Applied Energy, Elsevier, vol. 371(C).
  • Handle: RePEc:eee:appene:v:371:y:2024:i:c:s0306261924010511
    DOI: 10.1016/j.apenergy.2024.123668
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924010511
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.123668?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Shi, Tao & Xu, Chang & Dong, Wenhao & Zhou, Hangyu & Bokhari, Awais & Klemeš, Jiří Jaromír & Han, Ning, 2023. "Research on energy management of hydrogen electric coupling system based on deep reinforcement learning," Energy, Elsevier, vol. 282(C).
    2. Li, Yang & Bu, Fanjin & Li, Yuanzheng & Long, Chao, 2023. "Optimal scheduling of island integrated energy systems considering multi-uncertainties and hydrothermal simultaneous transmission: A deep reinforcement learning approach," Applied Energy, Elsevier, vol. 333(C).
    3. Yang, Zhixue & Ren, Zhouyang & Li, Zhenwen & Xu, Yan & Li, Hui & Li, Wenyuan & Hu, Xiuqiong, 2022. "A comprehensive analysis method for levelized cost of energy in tidal current power generation farms," Renewable Energy, Elsevier, vol. 182(C), pages 982-991.
    4. Amuakwa-Mensah, Franklin & Näsström, Elin, 2022. "Role of banking sector performance in renewable energy consumption," Applied Energy, Elsevier, vol. 306(PB).
    5. Yi, Zonggen & Luo, Yusheng & Westover, Tyler & Katikaneni, Sravya & Ponkiya, Binaka & Sah, Suba & Mahmud, Sadab & Raker, David & Javaid, Ahmad & Heben, Michael J. & Khanna, Raghav, 2022. "Deep reinforcement learning based optimization for a tightly coupled nuclear renewable integrated energy system," Applied Energy, Elsevier, vol. 328(C).
    6. Fan, Feilong & Aditya, Venkataraman & Xu, Yan & Cheong, Benjamin & Gupta, Amit K., 2022. "Robustly coordinated operation of a ship microgird with hybrid propulsion systems and hydrogen fuel cells," Applied Energy, Elsevier, vol. 312(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dong, Yingchao & Wuken, Edehong & Zhang, Hongli & Ren, Peng & Zhou, Xiaojun, 2025. "Bi-level coordinated operation optimization of multi-park integrated energy systems considering categorized demand response and uncertainty: A unified adaptive robust optimization approach," Renewable Energy, Elsevier, vol. 241(C).
    2. Gao, Yuan & Tahir, Mustafa & Siano, Pierluigi & Bi, Yue & Hu, Sile & Yang, Jiaqiang, 2025. "Optimization of renewable energy-based integrated energy systems: A three-stage stochastic robust model," Applied Energy, Elsevier, vol. 377(PD).
    3. Kaabinejadian, Amirreza & Pozarlik, Artur & Acar, Canan, 2025. "A systematic review of predictive, optimization, and smart control strategies for hydrogen-based building heating systems," Applied Energy, Elsevier, vol. 379(C).
    4. Ren, Peng & Chen, Lunshu & Hui, Hongxun, 2024. "Power-controllable variable refrigerant flow system with flexibility value for demand response," Energy, Elsevier, vol. 313(C).
    5. Gang Lu & Bo Yuan & Baorui Nie & Peng Xia & Cong Wu & Guangzeng Sun, 2025. "Enhanced Dynamic Expansion Planning Model Incorporating Q-Learning and Distributionally Robust Optimization for Resilient and Cost-Efficient Distribution Networks," Energies, MDPI, vol. 18(5), pages 1-25, February.
    6. Kleanthis, Nikos & Stavrakas, Vassilis & Flamos, Alexandros, 2025. "Bidirectional soft-linking of a Capacity Expansion Model with a Production Cost Model to evaluate the feasibility of transition pathways towards carbon neutrality in the power sector," Applied Energy, Elsevier, vol. 378(PB).
    7. Lin, Mohan & Liu, Jia & Tang, Zao & Zhou, Yue & Jiang, Biao & Zeng, Pingliang & Zhou, Xinghua, 2025. "Coordinated DSO-VPP operation framework with energy and reserve integrated from shared energy storage: A mixed game method," Applied Energy, Elsevier, vol. 379(C).
    8. Ge, Pingxu & Tang, Daogui & Yuan, Yuji & Guerrero, Josep M. & Zio, Enrico, 2025. "A hierarchical multi-objective co-optimization framework for sizing and energy management of coupled hydrogen-electricity energy storage systems at ports," Applied Energy, Elsevier, vol. 384(C).
    9. Yulong Yang & Songyuan Li & Nan Zhang & Zhongwen Yan & Weiyang Liu & Songnan Wang, 2025. "Two-Level Optimal Scheduling of Electric–Aluminum–Carbon Energy System Considering Operational Safety of Electrolytic Aluminum Plants," Energies, MDPI, vol. 18(7), pages 1-22, March.
    10. Yao Xiao & Caixia Yang & Tao Chen & Mingze Lei & Supannika Wattana & Buncha Wattana, 2025. "Strategies of a Wind–Solar–Storage System in Jiangxi Province Using the LEAP–NEMO Framework for Achieving Carbon Peaking Goals," Energies, MDPI, vol. 18(5), pages 1-19, February.
    11. Keyong Hu & Qingqing Yang & Lei Lu & Yu Zhang & Shuifa Sun & Ben Wang, 2025. "Two-Stage Distributionally Robust Optimal Scheduling for Integrated Energy Systems Considering Uncertainties in Renewable Generation and Loads," Mathematics, MDPI, vol. 13(9), pages 1-30, April.
    12. Xia, Weiyi & Ren, Zhouyang & Li, Hui & Pan, Zhen, 2024. "A data-driven probabilistic evaluation method of hydrogen fuel cell vehicles hosting capacity for integrated hydrogen-electricity network," Applied Energy, Elsevier, vol. 376(PB).
    13. Yang, Zhixue & Li, Hui & Zhang, Hongcai, 2025. "A power-to-methanol-based chemical industry system-aided decarbonization approach for power distribution networks," Applied Energy, Elsevier, vol. 384(C).
    14. Shen, Yi & Zhai, Junyi & Kang, Zhongjian & Zhao, Bei & Gao, Xianhui & Li, Zhengmao, 2025. "Distributionally robust chance-constrained energy management for island DC microgrid with offshore wind power hydrogen production," Energy, Elsevier, vol. 316(C).
    15. Wang, Shunchao, 2025. "Optimal sizing of Power-to-Ammonia plants: A stochastic two-stage mixed-integer programming approach," Energy, Elsevier, vol. 318(C).
    16. Dongsen Li & Kang Qian & Yiyue Xu & Jiangshan Zhou & Zhangfan Wang & Yufei Peng & Qiang Xing, 2025. "A Multi-Time Scale Optimal Scheduling Strategy for the Electro-Hydrogen Coupling System Based on the Modified TCN-PPO," Energies, MDPI, vol. 18(8), pages 1-22, April.
    17. Xi Zhang & Longyun Kang & Xuemei Wang & Yangbo Liu & Sheng Huang, 2025. "Capacity Optimization Configuration of Hybrid Energy Storage Systems for Wind Farms Based on Improved k-means and Two-Stage Decomposition," Energies, MDPI, vol. 18(4), pages 1-24, February.
    18. Zhu, Jie & Xu, Yinliang & Tai, Nengling & Sun, Hongbin, 2025. "Joint chance-constrained energy-reserve co-optimization for distribution networks with flexible resource aggregators," Applied Energy, Elsevier, vol. 388(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Han, Fengwu & Zeng, Jianfeng & Lin, Junjie & Gao, Chong & Ma, Zeyang, 2023. "A novel two-layer nested optimization method for a zero-carbon island integrated energy system, incorporating tidal current power generation," Renewable Energy, Elsevier, vol. 218(C).
    2. Prabawa, Panggah & Choi, Dae-Hyun, 2024. "Safe deep reinforcement learning-assisted two-stage energy management for active power distribution networks with hydrogen fueling stations," Applied Energy, Elsevier, vol. 375(C).
    3. Gao, Yuan & Tahir, Mustafa & Siano, Pierluigi & Bi, Yue & Hu, Sile & Yang, Jiaqiang, 2025. "Optimization of renewable energy-based integrated energy systems: A three-stage stochastic robust model," Applied Energy, Elsevier, vol. 377(PD).
    4. Zhou, Yanting & Ma, Zhongjing & Shi, Xingyu & Zou, Suli, 2024. "Multi-agent optimal scheduling for integrated energy system considering the global carbon emission constraint," Energy, Elsevier, vol. 288(C).
    5. Yin, Linfei & Xiong, Yi, 2024. "Incremental learning user profile and deep reinforcement learning for managing building energy in heating water," Energy, Elsevier, vol. 313(C).
    6. Gao, Xianhui & Wang, Sheng & Sun, Ying & Zhai, Junyi & Chen, Nan & Zhang, Xiao-Ping, 2024. "Low-carbon energy scheduling for integrated energy systems considering offshore wind power hydrogen production and dynamic hydrogen doping strategy," Applied Energy, Elsevier, vol. 376(PA).
    7. Zhang, Tianhao & Dong, Zhe & Huang, Xiaojin, 2024. "Multi-objective optimization of thermal power and outlet steam temperature for a nuclear steam supply system with deep reinforcement learning," Energy, Elsevier, vol. 286(C).
    8. Yang, Tianjian & Qian, Peng & Lei, Tianyi, 2025. "Does ease of doing business promote renewable energy development? Evidence from 162 economies," Journal of Asian Economics, Elsevier, vol. 97(C).
    9. He Yin & Hai Lan & Ying-Yi Hong & Zhuangwei Wang & Peng Cheng & Dan Li & Dong Guo, 2023. "A Comprehensive Review of Shipboard Power Systems with New Energy Sources," Energies, MDPI, vol. 16(5), pages 1-44, February.
    10. Keerthana Sivamayil & Elakkiya Rajasekar & Belqasem Aljafari & Srete Nikolovski & Subramaniyaswamy Vairavasundaram & Indragandhi Vairavasundaram, 2023. "A Systematic Study on Reinforcement Learning Based Applications," Energies, MDPI, vol. 16(3), pages 1-23, February.
    11. Park, Chybyung & Jeong, Byongug & Zhou, Peilin, 2022. "Lifecycle energy solution of the electric propulsion ship with Live-Life cycle assessment for clean maritime economy," Applied Energy, Elsevier, vol. 328(C).
    12. Dunbar, Kwamie & Treku, Daniel N., 2025. "Do energy transition investment flows aid climate commitments?," Energy Economics, Elsevier, vol. 142(C).
    13. Wesam M. A. Hamed & Nesrin Özataç, 2024. "Spillover effects of financial development on renewable energy deployment and carbon neutrality: Does GCC institutional quality play a moderating role?," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(11), pages 27351-27374, November.
    14. Keyong Hu & Qingqing Yang & Lei Lu & Yu Zhang & Shuifa Sun & Ben Wang, 2025. "Two-Stage Distributionally Robust Optimal Scheduling for Integrated Energy Systems Considering Uncertainties in Renewable Generation and Loads," Mathematics, MDPI, vol. 13(9), pages 1-30, April.
    15. Madurai Elavarasan, Rajvikram & Nadarajah, Mithulananthan & Pugazhendhi, Rishi & Sinha, Avik & Gangatharan, Sivasankar & Chiaramonti, David & Abou Houran, Mohamad, 2023. "The untold subtlety of energy consumption and its influence on policy drive towards Sustainable Development Goal 7," Applied Energy, Elsevier, vol. 334(C).
    16. Junika Napitupulu & Septony B. Siahaan & Sunday Ade Sitorus, 2023. "Renewable Energy and its Moderation on Green Home Selection in Indonesia: Bridging Environment, Product, and Value," International Journal of Energy Economics and Policy, Econjournals, vol. 13(6), pages 259-269, November.
    17. Liu, Ying & Feng, Chao, 2023. "Promoting renewable energy through national energy legislation," Energy Economics, Elsevier, vol. 118(C).
    18. Pu, Ganlin & Wong, Wing-Keung & Du, Qiang & Al Shraah, Ata & Alromaihi, Abdullah & Muda, Iskandar, 2024. "Asymmetric impact of natural resources, fintech, and digital banking on climate change and environmental sustainability in BRICS countries," Resources Policy, Elsevier, vol. 91(C).
    19. Chen, Yan & Zhang, Ruiqian & Lyu, Jiayi & Hou, Yuqi, 2024. "AI and Nuclear: A perfect intersection of danger and potential?," Energy Economics, Elsevier, vol. 133(C).
    20. Shi, Jiatong & Guo, Yangying & Wang, Sen & Yu, Xinyi & Jiang, Qianyu & Xu, Weidong & Yan, Yamin & Chen, Yujie & Zhang, Hongyu & Wang, Bohong, 2024. "An optimisation method for planning and operating nearshore island power and natural gas energy systems," Energy, Elsevier, vol. 308(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:371:y:2024:i:c:s0306261924010511. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.