IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v313y2024ics0360544224035989.html
   My bibliography  Save this article

Power-controllable variable refrigerant flow system with flexibility value for demand response

Author

Listed:
  • Ren, Peng
  • Chen, Lunshu
  • Hui, Hongxun

Abstract

With the increase of renewable energy sources in the power supply, the issues of balancing power supply and demand are becoming severe. Demand response, by altering the demand-side load state, has been proven as a good method to solve the supply and demand balance problem. Variable refrigerant flow system has great potential in demand-side loads and is poised to become the mainstay of demand response. However, the traditional temperature or compressor state control of variable refrigerant flow systems does not allow for better power regulation for the power system. To address this problem, this paper proposes a power-controllable variable refrigerant flow system with demand response flexibility value for power regulation. The demand response flexibility value is designed as a subjective indicator to satisfy the heterogeneous customer comfort requirement. The predictive mean vote as an objective indicator of customer comfort coordinates with the demand response flexibility value. A fuzzy control strategy for variable refrigerant flow systems is designed to balance power system requirements and customer comfort requirements. The experiment result demonstrates that the power-controllable variable refrigerant flow system can provide power regulation service to the power system with a maximum power regulation deviation of 3.67%. By guaranteeing consumer comfort, the higher the flexibility value, the shorter the consumer’s participation time in demand response. The demand response flexibility values can provide regulation configuration for demand response in practical engineering.

Suggested Citation

  • Ren, Peng & Chen, Lunshu & Hui, Hongxun, 2024. "Power-controllable variable refrigerant flow system with flexibility value for demand response," Energy, Elsevier, vol. 313(C).
  • Handle: RePEc:eee:energy:v:313:y:2024:i:c:s0360544224035989
    DOI: 10.1016/j.energy.2024.133820
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224035989
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.133820?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Talaat, M. & Elkholy, M.H. & Farahat, M.A., 2020. "Operating reserve investigation for the integration of wave, solar and wind energies," Energy, Elsevier, vol. 197(C).
    2. Zhang, Zhenwei & Wang, Chengfu & Wu, Qiuwei & Dong, Xiaoming, 2024. "Optimal dispatch for cross-regional integrated energy system with renewable energy uncertainties: A unified spatial-temporal cooperative framework," Energy, Elsevier, vol. 292(C).
    3. Wang, Kang & Wang, Chengfu & Yao, Wenliang & Zhang, Zhenwei & Liu, Chao & Dong, Xiaoming & Yang, Ming & Wang, Yong, 2024. "Embedding P2P transaction into demand response exchange: A cooperative demand response management framework for IES," Applied Energy, Elsevier, vol. 367(C).
    4. Yu, Zhou-Chen & Bao, Yu-Qing & Yang, Xiao, 2024. "Day-ahead scheduling of air-conditioners based on equivalent energy storage model under temperature-set-point control," Applied Energy, Elsevier, vol. 368(C).
    5. Hui, Hongxun & Ding, Yi & Liu, Weidong & Lin, You & Song, Yonghua, 2017. "Operating reserve evaluation of aggregated air conditioners," Applied Energy, Elsevier, vol. 196(C), pages 218-228.
    6. Zhou, Te & Chen, Honghu & Zhang, Ning & Han, Yang & Zhou, Siyu & Li, Zhi & Zhou, Meng, 2024. "An analogue on/off state-switching control method suitable for inverter-based air conditioner load cluster participating in demand response," Applied Energy, Elsevier, vol. 363(C).
    7. Xia, Weiyi & Ren, Zhouyang & Li, Hui & Pan, Zhen, 2024. "A data-driven probabilistic evaluation method of hydrogen fuel cell vehicles hosting capacity for integrated hydrogen-electricity network," Applied Energy, Elsevier, vol. 376(PB).
    8. Dai, Shuangfeng & Mansouri, Seyed Amir & Huang, Shoujun & Alharthi, Yahya Z. & Wu, Yongfei & Bagherzadeh, Leila, 2024. "A multi-stage techno-economic model for harnessing flexibility from IoT-enabled appliances and smart charging systems: Developing a competitive local flexibility market using Stackelberg game theory," Applied Energy, Elsevier, vol. 373(C).
    9. Wang, Jiewei & Wei, Ziqing & Zhu, Yikang & Zheng, Chunyuan & Li, Bin & Zhai, Xiaoqiang, 2023. "Demand response via optimal pre-cooling combined with temperature reset strategy for air conditioning system: A case study of office building," Energy, Elsevier, vol. 282(C).
    10. Wang, Jianxiao & Zhong, Haiwang & Ma, Ziming & Xia, Qing & Kang, Chongqing, 2017. "Review and prospect of integrated demand response in the multi-energy system," Applied Energy, Elsevier, vol. 202(C), pages 772-782.
    11. Dong, Lianxin & Wu, Qing & Hong, Juhua & Wang, Zhihua & Fan, Shuai & He, Guangyu, 2023. "An adaptive decentralized regulation strategy for the cluster with massive inverter air conditionings," Applied Energy, Elsevier, vol. 330(PA).
    12. Song, Meng & Deng, Rongnan & Yan, Xingyu & Sun, Wei & Gao, Ciwei & Yan, Mingyu & Ban, Mingfei & Xia, Shiwei, 2024. "Two-stage decision-dependent demand response driven by TCLs for distribution system resilience enhancement," Applied Energy, Elsevier, vol. 361(C).
    13. Buyak, Nadia & Deshko, Valeriy & Bilous, Inna & Pavlenko, Anatoliy & Sapunov, Anatoliy & Biriukov, Dmytro, 2023. "Dynamic interdependence of comfortable thermal conditions and energy efficiency increase in a nursery school building for heating and cooling period," Energy, Elsevier, vol. 283(C).
    14. Yang, Zhixue & Ren, Zhouyang & Li, Hui & Sun, Zhiyuan & Feng, Jianbing & Xia, Weiyi, 2024. "A multi-stage stochastic dispatching method for electricity‑hydrogen integrated energy systems driven by model and data," Applied Energy, Elsevier, vol. 371(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xie, Kang & Hui, Hongxun & Ding, Yi & Song, Yonghua & Ye, Chengjin & Zheng, Wandong & Ye, Shuiquan, 2022. "Modeling and control of central air conditionings for providing regulation services for power systems," Applied Energy, Elsevier, vol. 315(C).
    2. Hui, Hengyu & Bao, Minglei & Ding, Yi & Song, Yonghua, 2022. "Exploring the integrated flexible region of distributed multi-energy systems with process industry," Applied Energy, Elsevier, vol. 311(C).
    3. Hui, Hongxun & Ding, Yi & Song, Yonghua & Rahman, Saifur, 2019. "Modeling and control of flexible loads for frequency regulation services considering compensation of communication latency and detection error," Applied Energy, Elsevier, vol. 250(C), pages 161-174.
    4. Oshnoei, Arman & Kheradmandi, Morteza & Blaabjerg, Frede & Hatziargyriou, Nikos D. & Muyeen, S.M. & Anvari-Moghaddam, Amjad, 2022. "Coordinated control scheme for provision of frequency regulation service by virtual power plants," Applied Energy, Elsevier, vol. 325(C).
    5. Wang, Yi & Jin, Zikang & Liang, Jing & Li, Zhongwen & Dinavahi, Venkata & Liang, Jun, 2024. "Low-carbon optimal scheduling of park-integrated energy system based on bidirectional Stackelberg-Nash game theory," Energy, Elsevier, vol. 305(C).
    6. Morovat, Navid & Athienitis, Andreas K. & Candanedo, José Agustín & Nouanegue, Hervé Frank, 2024. "Heuristic model predictive control implementation to activate energy flexibility in a fully electric school building," Energy, Elsevier, vol. 296(C).
    7. Wang, Yi & Qiu, Dawei & Sun, Mingyang & Strbac, Goran & Gao, Zhiwei, 2023. "Secure energy management of multi-energy microgrid: A physical-informed safe reinforcement learning approach," Applied Energy, Elsevier, vol. 335(C).
    8. Ma, Huan & Sun, Qinghan & Chen, Qun & Zhao, Tian & He, Kelun, 2023. "Exergy-based flexibility cost indicator and spatio-temporal coordination principle of distributed multi-energy systems," Energy, Elsevier, vol. 267(C).
    9. Li, Yang & Wang, Bin & Yang, Zhen & Li, Jiazheng & Chen, Chen, 2022. "Hierarchical stochastic scheduling of multi-community integrated energy systems in uncertain environments via Stackelberg game," Applied Energy, Elsevier, vol. 308(C).
    10. Tie, Yingqi & Hu, Bo & Shao, Changzheng & Huang, Wei & Qi, Feng & Xie, Kaigui, 2023. "Integrated flexibility characterization and measurement of distributed multi-energy systems considering temporal coupling constraints," Energy, Elsevier, vol. 283(C).
    11. Shan, Kui & Wang, Shengwei, 2017. "Energy efficient design and control of cleanroom environment control systems in subtropical regions – A comparative analysis and on-site validation," Applied Energy, Elsevier, vol. 204(C), pages 582-595.
    12. Ma, Cheng & Lei, Shunbo & Chen, Dong & Wang, Chong & Hatziargyriou, Nikos D. & Song, Ziyou, 2025. "Sequential service restoration with grid-interactive flexibility from building AC systems for resilient microgrids under endogenous and exogenous uncertainties," Applied Energy, Elsevier, vol. 377(PB).
    13. Zheng, Ling & Zhou, Bin & Cao, Yijia & Wing Or, Siu & Li, Yong & Wing Chan, Ka, 2022. "Hierarchical distributed multi-energy demand response for coordinated operation of building clusters," Applied Energy, Elsevier, vol. 308(C).
    14. Zeng, Huibin & Shao, Bilin & Dai, Hongbin & Yan, Yichuan & Tian, Ning, 2023. "Natural gas demand response strategy considering user satisfaction and load volatility under dynamic pricing," Energy, Elsevier, vol. 277(C).
    15. Tang, Bao-Jun & Cao, Xi-Lin & Li, Ru & Xiang, Zhi-Bo & Zhang, Sen, 2024. "Economic and low-carbon planning for interconnected integrated energy systems considering emerging technologies and future development trends," Energy, Elsevier, vol. 302(C).
    16. Siwen Wang & Hui Chen & Chunyang Gong & Yanfei Shang & Zhixin Wang, 2024. "The Operation Strategy of a Multi-Microgrid Considering the Interaction of Different Subjects’ Interests," Energies, MDPI, vol. 17(19), pages 1-20, September.
    17. Xu, Qingyang & Sun, Feihu & Cai, Qiran & Liu, Li-Jing & Zhang, Kun & Liang, Qiao-Mei, 2022. "Assessment of the influence of demand-side responses on high-proportion renewable energy system: An evidence of Qinghai, China," Renewable Energy, Elsevier, vol. 190(C), pages 945-958.
    18. Sivaneasan, Balakrishnan & Kandasamy, Nandha Kumar & Lim, May Lin & Goh, Kwang Ping, 2018. "A new demand response algorithm for solar PV intermittency management," Applied Energy, Elsevier, vol. 218(C), pages 36-45.
    19. Wu, Long & Yin, Xunyuan & Pan, Lei & Liu, Jinfeng, 2023. "Distributed economic predictive control of integrated energy systems for enhanced synergy and grid response: A decomposition and cooperation strategy," Applied Energy, Elsevier, vol. 349(C).
    20. Keyong Hu & Qingqing Yang & Lei Lu & Yu Zhang & Shuifa Sun & Ben Wang, 2025. "Two-Stage Distributionally Robust Optimal Scheduling for Integrated Energy Systems Considering Uncertainties in Renewable Generation and Loads," Mathematics, MDPI, vol. 13(9), pages 1-30, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:313:y:2024:i:c:s0360544224035989. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.