IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v325y2022ics0306261922010236.html
   My bibliography  Save this article

Coordinated control scheme for provision of frequency regulation service by virtual power plants

Author

Listed:
  • Oshnoei, Arman
  • Kheradmandi, Morteza
  • Blaabjerg, Frede
  • Hatziargyriou, Nikos D.
  • Muyeen, S.M.
  • Anvari-Moghaddam, Amjad

Abstract

This paper proposes a coordinated control strategy for a Virtual Power Plant (VPP) contribution to load frequency control. The considered VPP comprises distributed Battery Energy Storage Systems (BESSs) and Heat Pump Water Heaters (HPWHs). The frequency regulation signal is distributed between thermal generator and the VPP based on distribution coefficients which are calculated through conducting a multi-objective optimization problem. The optimization framework incorporates the dynamic regulation performance as well as the total regulation cost. A fuzzy strategy is adopted to obtain the final solution according to user-defined conditions. The regulation signal of VPP is dispatched based on the speed and the available power capacity of VPP components. The performance of the proposed coordination scheme is compared to the scheme without coordination and that with no involvement of VPP in frequency regulation. The regulation performance is also evaluated for varying time delays expected in the communication channels. An approach based on brain emotional learning is developed to coordinate the VPP and conventional generation unit to avoid large frequency deviations caused by the communication delays. Case studies are conducted on a multi-area power system in MATLAB/Simulink environment, and the results are verified by the OPAL-RT real-time simulator.

Suggested Citation

  • Oshnoei, Arman & Kheradmandi, Morteza & Blaabjerg, Frede & Hatziargyriou, Nikos D. & Muyeen, S.M. & Anvari-Moghaddam, Amjad, 2022. "Coordinated control scheme for provision of frequency regulation service by virtual power plants," Applied Energy, Elsevier, vol. 325(C).
  • Handle: RePEc:eee:appene:v:325:y:2022:i:c:s0306261922010236
    DOI: 10.1016/j.apenergy.2022.119734
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261922010236
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.119734?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Behrangrad, Mahdi, 2015. "A review of demand side management business models in the electricity market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 270-283.
    2. Rahmat Khezri & Arman Oshnoei & Mehrdad Tarafdar Hagh & SM Muyeen, 2018. "Coordination of Heat Pumps, Electric Vehicles and AGC for Efficient LFC in a Smart Hybrid Power System via SCA-Based Optimized FOPID Controllers," Energies, MDPI, vol. 11(2), pages 1-21, February.
    3. Arman Oshnoei & Rahmat Khezri & S. M. Muyeen, 2019. "Model Predictive-Based Secondary Frequency Control Considering Heat Pump Water Heaters," Energies, MDPI, vol. 12(3), pages 1-18, January.
    4. Hui, Hongxun & Ding, Yi & Liu, Weidong & Lin, You & Song, Yonghua, 2017. "Operating reserve evaluation of aggregated air conditioners," Applied Energy, Elsevier, vol. 196(C), pages 218-228.
    5. Wang, Jianxiao & Zhong, Haiwang & Ma, Ziming & Xia, Qing & Kang, Chongqing, 2017. "Review and prospect of integrated demand response in the multi-energy system," Applied Energy, Elsevier, vol. 202(C), pages 772-782.
    6. Li, Jiawen & Yu, Tao & Zhang, Xiaoshun, 2022. "Coordinated load frequency control of multi-area integrated energy system using multi-agent deep reinforcement learning," Applied Energy, Elsevier, vol. 306(PA).
    7. Lakshmanan, Venkatachalam & Marinelli, Mattia & Hu, Junjie & Bindner, Henrik W., 2016. "Provision of secondary frequency control via demand response activation on thermostatically controlled loads: Solutions and experiences from Denmark," Applied Energy, Elsevier, vol. 173(C), pages 470-480.
    8. Hui, Hongxun & Ding, Yi & Song, Yonghua & Rahman, Saifur, 2019. "Modeling and control of flexible loads for frequency regulation services considering compensation of communication latency and detection error," Applied Energy, Elsevier, vol. 250(C), pages 161-174.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mokhtar Aly & Emad A. Mohamed & Abdullah M. Noman & Emad M. Ahmed & Fayez F. M. El-Sousy & Masayuki Watanabe, 2023. "Optimized Non-Integer Load Frequency Control Scheme for Interconnected Microgrids in Remote Areas with High Renewable Energy and Electric Vehicle Penetrations," Mathematics, MDPI, vol. 11(9), pages 1-31, April.
    2. Dong, Zhe & Cheng, Zhonghua & Zhu, Yunlong & Huang, Xiaojin & Dong, Yujie & Zhang, Zuoyi, 2023. "Coordinated control of mHTGR-based nuclear steam supply systems considering cold helium temperature," Energy, Elsevier, vol. 284(C).
    3. Jiaqi Liu & Hongji Hu & Samson S. Yu & Hieu Trinh, 2023. "Virtual Power Plant with Renewable Energy Sources and Energy Storage Systems for Sustainable Power Grid-Formation, Control Techniques and Demand Response," Energies, MDPI, vol. 16(9), pages 1-28, April.
    4. Francesco Gulotta & Edoardo Daccò & Alessandro Bosisio & Davide Falabretti, 2023. "Opening of Ancillary Service Markets to Distributed Energy Resources: A Review," Energies, MDPI, vol. 16(6), pages 1-25, March.
    5. Song, Yuguang & Xia, Mingchao & Chen, Qifang, 2023. "The robust synchronization control scheme for flexible resources considering the stochastic and delay response process," Applied Energy, Elsevier, vol. 343(C).
    6. Sun, Xiaotian & Xie, Haipeng & Qiu, Dawei & Xiao, Yunpeng & Bie, Zhaohong & Strbac, Goran, 2023. "Decentralized frequency regulation service provision for virtual power plants: A best response potential game approach," Applied Energy, Elsevier, vol. 352(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hui, Hongxun & Ding, Yi & Song, Yonghua & Rahman, Saifur, 2019. "Modeling and control of flexible loads for frequency regulation services considering compensation of communication latency and detection error," Applied Energy, Elsevier, vol. 250(C), pages 161-174.
    2. Hui, Hongxun & Ding, Yi & Shi, Qingxin & Li, Fangxing & Song, Yonghua & Yan, Jinyue, 2020. "5G network-based Internet of Things for demand response in smart grid: A survey on application potential," Applied Energy, Elsevier, vol. 257(C).
    3. Latif, Abdul & Hussain, S.M. Suhail & Das, Dulal Chandra & Ustun, Taha Selim, 2020. "State-of-the-art of controllers and soft computing techniques for regulated load frequency management of single/multi-area traditional and renewable energy based power systems," Applied Energy, Elsevier, vol. 266(C).
    4. Wu, Long & Yin, Xunyuan & Pan, Lei & Liu, Jinfeng, 2023. "Distributed economic predictive control of integrated energy systems for enhanced synergy and grid response: A decomposition and cooperation strategy," Applied Energy, Elsevier, vol. 349(C).
    5. Kai Ma & Chenliang Yuan & Jie Yang & Zhixin Liu & Xinping Guan, 2017. "Switched Control Strategies of Aggregated Commercial HVAC Systems for Demand Response in Smart Grids," Energies, MDPI, vol. 10(7), pages 1-18, July.
    6. Xie, Kang & Hui, Hongxun & Ding, Yi & Song, Yonghua & Ye, Chengjin & Zheng, Wandong & Ye, Shuiquan, 2022. "Modeling and control of central air conditionings for providing regulation services for power systems," Applied Energy, Elsevier, vol. 315(C).
    7. Hui, Hongxun & Ding, Yi & Song, Yonghua, 2020. "Adaptive time-delay control of flexible loads in power systems facing accidental outages," Applied Energy, Elsevier, vol. 275(C).
    8. Guelpa, Elisa & Verda, Vittorio, 2021. "Demand response and other demand side management techniques for district heating: A review," Energy, Elsevier, vol. 219(C).
    9. Omid Sadeghian & Arash Moradzadeh & Behnam Mohammadi-Ivatloo & Mehdi Abapour & Fausto Pedro Garcia Marquez, 2020. "Generation Units Maintenance in Combined Heat and Power Integrated Systems Using the Mixed Integer Quadratic Programming Approach," Energies, MDPI, vol. 13(11), pages 1-25, June.
    10. Mohseni, Soheil & Brent, Alan C. & Kelly, Scott & Browne, Will N. & Burmester, Daniel, 2021. "Strategic design optimisation of multi-energy-storage-technology micro-grids considering a two-stage game-theoretic market for demand response aggregation," Applied Energy, Elsevier, vol. 287(C).
    11. Ding, Yi & Cui, Wenqi & Zhang, Shujun & Hui, Hongxun & Qiu, Yiwei & Song, Yonghua, 2019. "Multi-state operating reserve model of aggregate thermostatically-controlled-loads for power system short-term reliability evaluation," Applied Energy, Elsevier, vol. 241(C), pages 46-58.
    12. Hui, Hengyu & Bao, Minglei & Ding, Yi & Song, Yonghua, 2022. "Exploring the integrated flexible region of distributed multi-energy systems with process industry," Applied Energy, Elsevier, vol. 311(C).
    13. Deepak Kumar Gupta & Amitkumar V. Jha & Bhargav Appasani & Avireni Srinivasulu & Nicu Bizon & Phatiphat Thounthong, 2021. "Load Frequency Control Using Hybrid Intelligent Optimization Technique for Multi-Source Power Systems," Energies, MDPI, vol. 14(6), pages 1-16, March.
    14. Cheng, Meng & Sami, Saif Sabah & Wu, Jianzhong, 2017. "Benefits of using virtual energy storage system for power system frequency response," Applied Energy, Elsevier, vol. 194(C), pages 376-385.
    15. Shan, Kui & Wang, Shengwei & Zhuang, Chaoqun, 2021. "Controlling a large constant speed centrifugal chiller to provide grid frequency regulation: A validation based on onsite tests," Applied Energy, Elsevier, vol. 300(C).
    16. Christos N. Dimitriadis & Evangelos G. Tsimopoulos & Michael C. Georgiadis, 2021. "A Review on the Complementarity Modelling in Competitive Electricity Markets," Energies, MDPI, vol. 14(21), pages 1-27, November.
    17. Meyabadi, A. Fattahi & Deihimi, M.H., 2017. "A review of demand-side management: Reconsidering theoretical framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 367-379.
    18. Abdul Conteh & Mohammed Elsayed Lotfy & Kiptoo Mark Kipngetich & Tomonobu Senjyu & Paras Mandal & Shantanu Chakraborty, 2019. "An Economic Analysis of Demand Side Management Considering Interruptible Load and Renewable Energy Integration: A Case Study of Freetown Sierra Leone," Sustainability, MDPI, vol. 11(10), pages 1-19, May.
    19. Tsoumalis, Georgios I. & Bampos, Zafeirios N. & Biskas, Pandelis N. & Keranidis, Stratos D. & Symeonidis, Polychronis A. & Voulgarakis, Dimitrios K., 2022. "A novel system for providing explicit demand response from domestic natural gas boilers," Applied Energy, Elsevier, vol. 317(C).
    20. İsmail Hakkı Çavdar & Vahit Feryad, 2021. "Efficient Design of Energy Disaggregation Model with BERT-NILM Trained by AdaX Optimization Method for Smart Grid," Energies, MDPI, vol. 14(15), pages 1-21, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:325:y:2022:i:c:s0306261922010236. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.