IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v384y2025ics0306261925001254.html
   My bibliography  Save this article

A power-to-methanol-based chemical industry system-aided decarbonization approach for power distribution networks

Author

Listed:
  • Yang, Zhixue
  • Li, Hui
  • Zhang, Hongcai

Abstract

Renewable hydrogen-based chemical industry systems hold great promise for decarbonizing the power grid by facilitating the integration of renewable energy and carbon dioxide utilization. However, effectively leveraging the regulation potential of power-to-hydrogen-to-methanol-based chemical industry systems for decarbonizing the power grid presents an interdisciplinary challenge. This involves intricate carbon dioxide trading, as well as modeling and optimization of the hydrogen-based chemical industry network (CIN). This study proposes a power-to-hydrogen-to-methanol-based CIN-aided method for decarbonizing power distribution networks. Initially, we propose an approach to optimize carbon and electricity demands from CIN, guiding carbon procurement through marginal carbon dioxide pricing. This approach determines time-varying prices for carbon dioxide commodities with a clear physical interpretation, integrating duality theory and the Karush–Kuhn–Tucker condition. Subsequently, we design a precise CIN with dynamic operational capabilities and formulate an optimal mass flow model to enhance the CIN’s interaction with the power grid. Finally, numerical experiments conducted on 33-bus and 141-bus test systems confirm that our proposed method reduces carbon emissions by 5%–10% through coordinated interaction, carbon dioxide pricing, and modeling of CIN.

Suggested Citation

  • Yang, Zhixue & Li, Hui & Zhang, Hongcai, 2025. "A power-to-methanol-based chemical industry system-aided decarbonization approach for power distribution networks," Applied Energy, Elsevier, vol. 384(C).
  • Handle: RePEc:eee:appene:v:384:y:2025:i:c:s0306261925001254
    DOI: 10.1016/j.apenergy.2025.125395
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261925001254
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2025.125395?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ashwin Rode & Tamma Carleton & Michael Delgado & Michael Greenstone & Trevor Houser & Solomon Hsiang & Andrew Hultgren & Amir Jina & Robert E. Kopp & Kelly E. McCusker & Ishan Nath & James Rising & Ji, 2021. "Estimating a social cost of carbon for global energy consumption," Nature, Nature, vol. 598(7880), pages 308-314, October.
    2. Tan, Hong & Wang, Yuwei & Wang, Qiujie & Lin, Zhenjia & Mohamed, Mohamed A., 2024. "Day-ahead dispatch of electricity-hydrogen systems under solid-state transportation mode of hydrogen energy via FV-IGDT approach," Energy, Elsevier, vol. 300(C).
    3. Wang, Yunqi & Qiu, Jing & Tao, Yuechuan & Zhang, Xian & Wang, Guibin, 2020. "Low-carbon oriented optimal energy dispatch in coupled natural gas and electricity systems," Applied Energy, Elsevier, vol. 280(C).
    4. Wang, Kang & Wang, Chengfu & Yao, Wenliang & Zhang, Zhenwei & Liu, Chao & Dong, Xiaoming & Yang, Ming & Wang, Yong, 2024. "Embedding P2P transaction into demand response exchange: A cooperative demand response management framework for IES," Applied Energy, Elsevier, vol. 367(C).
    5. Sánchez, Antonio & Martín, Mariano & Zhang, Qi, 2021. "Optimal design of sustainable power-to-fuels supply chains for seasonal energy storage," Energy, Elsevier, vol. 234(C).
    6. Kevin Rennert & Frank Errickson & Brian C. Prest & Lisa Rennels & Richard G. Newell & William Pizer & Cora Kingdon & Jordan Wingenroth & Roger Cooke & Bryan Parthum & David Smith & Kevin Cromar & Dela, 2022. "Comprehensive evidence implies a higher social cost of CO2," Nature, Nature, vol. 610(7933), pages 687-692, October.
    7. Huang, Renxing & Kang, Lixia & Liu, Yongzhong, 2022. "Renewable synthetic methanol system design based on modular production lines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    8. Park, Joungho & Hwan Ryu, Kyung & Kim, Chang-Hee & Chul Cho, Won & Kim, MinJoong & Hun Lee, Jae & Cho, Hyun-Seok & Lee, Jay H., 2023. "Green hydrogen to tackle the power curtailment: Meteorological data-based capacity factor and techno-economic analysis," Applied Energy, Elsevier, vol. 340(C).
    9. Wang, Sheng & Hui, Hongxun & Chen, Tao & Zhai, Junyi, 2025. "Multi-period operation of integrated electricity and gas systems with hydrogen blending considering gas composition dynamics," Applied Energy, Elsevier, vol. 377(PC).
    10. Kotowicz, Janusz & Węcel, Daniel & Kwilinski, Aleksy & Brzęczek, Mateusz, 2022. "Efficiency of the power-to-gas-to-liquid-to-power system based on green methanol," Applied Energy, Elsevier, vol. 314(C).
    11. Lee, Boreum & Lee, Hyunjun & Lim, Dongjun & Brigljević, Boris & Cho, Wonchul & Cho, Hyun-Seok & Kim, Chang-Hee & Lim, Hankwon, 2020. "Renewable methanol synthesis from renewable H2 and captured CO2: How can power-to-liquid technology be economically feasible?," Applied Energy, Elsevier, vol. 279(C).
    12. Al-Orabi, Ahmed M. & Osman, Mohamed G. & Sedhom, Bishoy E., 2023. "Analysis of the economic and technological viability of producing green hydrogen with renewable energy sources in a variety of climates to reduce CO2 emissions: A case study in Egypt," Applied Energy, Elsevier, vol. 338(C).
    13. Huang, Yujing & Wang, Yudong & Liu, Nian, 2022. "Low-carbon economic dispatch and energy sharing method of multiple Integrated Energy Systems from the perspective of System of Systems," Energy, Elsevier, vol. 244(PA).
    14. Wang, Yunqi & Qiu, Jing & Tao, Yuechuan, 2022. "Robust energy systems scheduling considering uncertainties and demand side emission impacts," Energy, Elsevier, vol. 239(PD).
    15. Yao, Lingxiang & Guan, Zhiwen & Wang, Yang & Hui, Hongxun & Luo, Shuyu & Jia, Chuyun & You, Xingxing & Xiao, Xianyong, 2025. "Evaluating the feasibility of concentrated solar power as a replacement for coal-fired power in China: A comprehensive comparative analysis," Applied Energy, Elsevier, vol. 377(PA).
    16. Yang, Zhixue & Ren, Zhouyang & Li, Hui & Sun, Zhiyuan & Feng, Jianbing & Xia, Weiyi, 2024. "A multi-stage stochastic dispatching method for electricity‑hydrogen integrated energy systems driven by model and data," Applied Energy, Elsevier, vol. 371(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ma, Runzhuo & Bu, Siqi, 2025. "Evaluation and mitigation of carbon emissions in energy industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 212(C).
    2. Ren, Peng & Chen, Lunshu & Hui, Hongxun, 2024. "Power-controllable variable refrigerant flow system with flexibility value for demand response," Energy, Elsevier, vol. 313(C).
    3. De Cian, Enrica & Falchetta, Giacomo & Pavanello, Filippo & Romitti, Yasmin & Sue Wing, Ian, 2025. "The impact of air conditioning on residential electricity consumption across world countries," Journal of Environmental Economics and Management, Elsevier, vol. 131(C).
    4. Ling, Chen & Yang, Qing & Wang, Qingrui & Bartocci, Pietro & Jiang, Lei & Xu, Zishuo & Wang, Luyao, 2024. "A comprehensive consumption-based carbon accounting framework for power system towards low-carbon transition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 206(C).
    5. Rezaei, Mostafa & Akimov, Alexandr & Gray, Evan Mac A., 2024. "Techno-economics of offshore wind-based dynamic hydrogen production," Applied Energy, Elsevier, vol. 374(C).
    6. Rezaei, Mostafa & Akimov, Alexandr & Gray, Evan Mac A., 2024. "Levelised cost of dynamic green hydrogen production: A case study for Australia's hydrogen hubs," Applied Energy, Elsevier, vol. 370(C).
    7. Sun, Xiaocong & Bao, Minglei & Ding, Yi & Hui, Hengyu & Song, Yonghua & Zheng, Chenghang & Gao, Xiang, 2024. "Modeling and evaluation of probabilistic carbon emission flow for power systems considering load and renewable energy uncertainties," Energy, Elsevier, vol. 296(C).
    8. Kim, Sunwoo & Choi, Yechan & Park, Joungho & Adams, Derrick & Heo, Seongmin & Lee, Jay H., 2024. "Multi-period, multi-timescale stochastic optimization model for simultaneous capacity investment and energy management decisions for hybrid Micro-Grids with green hydrogen production under uncertainty," Renewable and Sustainable Energy Reviews, Elsevier, vol. 190(PA).
    9. Qian Zhou & Feng Gui & Benxuan Zhao & Jingyi Liu & Huiwen Cai & Kaida Xu & Sheng Zhao, 2024. "Examining the Social Costs of Carbon Emissions and the Ecosystem Service Value in Island Ecosystems: An Analysis of the Zhoushan Archipelago," Sustainability, MDPI, vol. 16(2), pages 1-19, January.
    10. Alexander Alexandrovich Golub & Marek Hanusch & Bardal,Diogo & Bruce Ian Keith & Daniel Navia Simon & Cornelius Fleischhaker, 2025. "Innovative Financial Instruments and Their Role in the Development of Jurisdictional REDD+," Policy Research Working Paper Series 11114, The World Bank.
    11. Park, Joungho & Kang, Sungho & Kim, Sunwoo & Kim, Hana & Cho, Hyun-Seok & Lee, Changsoo & Kim, MinJoong & Lee, Jay H., 2025. "The impact of degradation on the economics of green hydrogen," Renewable and Sustainable Energy Reviews, Elsevier, vol. 213(C).
    12. Yajing Gu & He Ren & Hongwei Liu & Yonggang Lin & Weifei Hu & Tian Zou & Liyuan Zhang & Luoyang Huang, 2024. "Simulation of a Tidal Current-Powered Freshwater and Energy Supply System for Sustainable Island Development," Sustainability, MDPI, vol. 16(20), pages 1-24, October.
    13. Zhong, Xiaoqing & Zhong, Weifeng & Lin, Zhenjia & Zhou, Guoxu & Lai, Loi Lei & Xie, Shengli & Yan, Jinyue, 2024. "Localized electricity and carbon allowance management for interconnected discrete manufacturing systems considering algorithmic and physical feasibility," Applied Energy, Elsevier, vol. 372(C).
    14. Aleksy Kwilinski & Oleksii Lyulyov & Tetyana Pimonenko, 2023. "Inclusive Economic Growth: Relationship between Energy and Governance Efficiency," Energies, MDPI, vol. 16(6), pages 1-16, March.
    15. Wang, Shunchao, 2025. "Optimal sizing of Power-to-Ammonia plants: A stochastic two-stage mixed-integer programming approach," Energy, Elsevier, vol. 318(C).
    16. Park, Joungho & Kang, Sungho & Kim, Sunwoo & Kim, Hana & Kim, Sang-Kyung & Lee, Jay H., 2024. "Optimizing green hydrogen systems: Balancing economic viability and reliability in the face of supply-demand volatility," Applied Energy, Elsevier, vol. 368(C).
    17. Huang, Yujing & Wang, Yudong & Liu, Nian, 2022. "Low-carbon economic dispatch and energy sharing method of multiple Integrated Energy Systems from the perspective of System of Systems," Energy, Elsevier, vol. 244(PA).
    18. Radosław Miśkiewicz & Krzysztof Matan & Jakub Karnowski, 2022. "The Role of Crypto Trading in the Economy, Renewable Energy Consumption and Ecological Degradation," Energies, MDPI, vol. 15(10), pages 1-15, May.
    19. Beaulieu, Jake & Kopits, Elizabeth & Moore, Chris C. & Parthum, Bryan M., 2024. "The Climate Benefits of Improving Water Quality," National Center for Environmental Economics-NCEE Working Papers 348911, United States Environmental Protection Agency (EPA).
    20. Croce, Leandro Firme & Tiago Filho, Geraldo Lúcio & Santos, Ivan Felipe Silva dos & Barros, Regina Mambeli, 2025. "Attractivity analysis of hybrid energy generation based on current energy market scenarios in Brazil," Energy, Elsevier, vol. 318(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:384:y:2025:i:c:s0306261925001254. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.