IDEAS home Printed from https://ideas.repec.org/p/ehl/lserod/124251.html
   My bibliography  Save this paper

Heterogeneous effects of weather shocks on firm economic performance

Author

Listed:
  • Tarsia, Romano

Abstract

This paper provides novel, firm-level estimates of the economic damages induced by temperature shocks. Leveraging European firm-level data, this study investigates the heterogeneity of damages across firms characteristics overlooked in aggregate analyses. The analysis consistently highlights negative (positive) impacts on the least (most) productive firms, contributing to both climate economics and the literature on aggregate productivity. Industry-specific effects indicate different susceptibilities across sectors to weather shocks. These results delve into the findings from the pooled sample which reveal a moderate U-shaped relationship between temperature and economic outcomes, suggesting significant adaptation for firms located in warmer areas. Temperature impacts on economic performance manifest with a lag, and varying persistence across firms. Methodologically, this work employs quantitative methods to address the potential drawbacks highlighted in the current climate econometrics discussion.

Suggested Citation

  • Tarsia, Romano, 2024. "Heterogeneous effects of weather shocks on firm economic performance," LSE Research Online Documents on Economics 124251, London School of Economics and Political Science, LSE Library.
  • Handle: RePEc:ehl:lserod:124251
    as

    Download full text from publisher

    File URL: http://eprints.lse.ac.uk/124251/
    File Function: Open access version.
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Barreca, Alan I., 2012. "Climate change, humidity, and mortality in the United States," Journal of Environmental Economics and Management, Elsevier, vol. 63(1), pages 19-34.
    2. Gita Gopinath & Şebnem Kalemli-Özcan & Loukas Karabarbounis & Carolina Villegas-Sanchez, 2017. "Capital Allocation and Productivity in South Europe," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 132(4), pages 1915-1967.
    3. Maximilian Kotz & Anders Levermann & Leonie Wenz, 2024. "The economic commitment of climate change," Nature, Nature, vol. 628(8008), pages 551-557, April.
    4. Nordhaus, William D, 1991. "To Slow or Not to Slow: The Economics of the Greenhouse Effect," Economic Journal, Royal Economic Society, vol. 101(407), pages 920-937, July.
    5. Marshall Burke & Solomon M. Hsiang & Edward Miguel, 2015. "Global non-linear effect of temperature on economic production," Nature, Nature, vol. 527(7577), pages 235-239, November.
    6. Zhang, Peng & Deschenes, Olivier & Meng, Kyle & Zhang, Junjie, 2018. "Temperature effects on productivity and factor reallocation: Evidence from a half million chinese manufacturing plants," Journal of Environmental Economics and Management, Elsevier, vol. 88(C), pages 1-17.
    7. Christoph Albert & Paula Bustos & Jacopo Ponticelli, 2021. "The Effects of Climate Change on Labor and Capital Reallocation," NBER Working Papers 28995, National Bureau of Economic Research, Inc.
    8. Marshall Burke & Vincent Tanutama, 2019. "Climatic Constraints on Aggregate Economic Output," NBER Working Papers 25779, National Bureau of Economic Research, Inc.
    9. Joshua Graff Zivin & Matthew Neidell, 2014. "Temperature and the Allocation of Time: Implications for Climate Change," Journal of Labor Economics, University of Chicago Press, vol. 32(1), pages 1-26.
    10. Mariaflavia Harari & Eliana La Ferrara, 2018. "Conflict, Climate, and Cells: A Disaggregated Analysis," The Review of Economics and Statistics, MIT Press, vol. 100(4), pages 594-608, October.
    11. Pierre Mérel & Matthew Gammans, 2021. "Climate Econometrics: Can the Panel Approach Account for Long‐Run Adaptation?," American Journal of Agricultural Economics, John Wiley & Sons, vol. 103(4), pages 1207-1238, August.
    12. Marshall Burke & Kyle Emerick, 2016. "Adaptation to Climate Change: Evidence from US Agriculture," American Economic Journal: Economic Policy, American Economic Association, vol. 8(3), pages 106-140, August.
    13. David Autor & David Dorn & Lawrence F Katz & Christina Patterson & John Van Reenen, 2020. "The Fall of the Labor Share and the Rise of Superstar Firms [“Automation and New Tasks: How Technology Displaces and Reinstates Labor”]," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 135(2), pages 645-709.
    14. Milenko Fadic & Paula Garda & Mauro Pisu, 2019. "The effect of public sector efficiency on firm-level productivity growth: The Italian case," OECD Economics Department Working Papers 1573, OECD Publishing.
    15. Newell, Richard G. & Prest, Brian C. & Sexton, Steven E., 2021. "The GDP-Temperature relationship: Implications for climate change damages," Journal of Environmental Economics and Management, Elsevier, vol. 108(C).
    16. Joshua D. Angrist & Jörn-Steffen Pischke, 2009. "Mostly Harmless Econometrics: An Empiricist's Companion," Economics Books, Princeton University Press, edition 1, number 8769.
    17. Chen, Xiaoguang & Yang, Lu, 2019. "Temperature and industrial output: Firm-level evidence from China," Journal of Environmental Economics and Management, Elsevier, vol. 95(C), pages 257-274.
    18. Robert S. Pindyck, 2013. "Climate Change Policy: What Do the Models Tell Us?," Journal of Economic Literature, American Economic Association, vol. 51(3), pages 860-872, September.
    19. Mendelsohn, Robert & Nordhaus, William D & Shaw, Daigee, 1994. "The Impact of Global Warming on Agriculture: A Ricardian Analysis," American Economic Review, American Economic Association, vol. 84(4), pages 753-771, September.
    20. E. Somanathan & Rohini Somanathan & Anant Sudarshan & Meenu Tewari, 2021. "The Impact of Temperature on Productivity and Labor Supply: Evidence from Indian Manufacturing," Journal of Political Economy, University of Chicago Press, vol. 129(6), pages 1797-1827.
    21. David Card & Gordon B. Dahl, 2011. "Family Violence and Football: The Effect of Unexpected Emotional Cues on Violent Behavior," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 126(1), pages 103-143.
    22. Im, Kyung So & Pesaran, M. Hashem & Shin, Yongcheol, 2003. "Testing for unit roots in heterogeneous panels," Journal of Econometrics, Elsevier, vol. 115(1), pages 53-74, July.
    23. Olivier Deschênes & Michael Greenstone, 2007. "The Economic Impacts of Climate Change: Evidence from Agricultural Output and Random Fluctuations in Weather," American Economic Review, American Economic Association, vol. 97(1), pages 354-385, March.
    24. Jawad M Addoum & David T Ng & Ariel Ortiz-Bobea & Harrison Hong, 2020. "Temperature Shocks and Establishment Sales," The Review of Financial Studies, Society for Financial Studies, vol. 33(3), pages 1331-1366.
    25. Nicholas Bloom & Mirko Draca & John Van Reenen, 2016. "Trade Induced Technical Change? The Impact of Chinese Imports on Innovation, IT and Productivity," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 83(1), pages 87-117.
    26. A. Colin Cameron & Douglas L. Miller, 2015. "A Practitioner’s Guide to Cluster-Robust Inference," Journal of Human Resources, University of Wisconsin Press, vol. 50(2), pages 317-372.
    27. De Loecker, Jan & Obermeier, Tim & Van Reenen, John, 2022. "Firms and inequality," LSE Research Online Documents on Economics 117827, London School of Economics and Political Science, LSE Library.
    28. Acevedo, Sebastian & Mrkaic, Mico & Novta, Natalija & Pugacheva, Evgenia & Topalova, Petia, 2020. "The Effects of Weather Shocks on Economic Activity: What are the Channels of Impact?," Journal of Macroeconomics, Elsevier, vol. 65(C).
    29. repec:osf:socarx:tcnad_v1 is not listed on IDEAS
    30. Melissa Dell & Benjamin F. Jones & Benjamin A. Olken, 2009. "Temperature and Income: Reconciling New Cross-Sectional and Panel Estimates," American Economic Review, American Economic Association, vol. 99(2), pages 198-204, May.
    31. Dietz, Simon & Stern, Nicholas, 2015. "Endogenous growth, convexity of damage and climate risk: how Nordhaus’ framework supports deep cuts in carbon emissions," LSE Research Online Documents on Economics 58406, London School of Economics and Political Science, LSE Library.
    32. Norris Keiller, Agnes & Van Reenen, John, 2024. "Disaster management," LSE Research Online Documents on Economics 126782, London School of Economics and Political Science, LSE Library.
    33. Olley, G Steven & Pakes, Ariel, 1996. "The Dynamics of Productivity in the Telecommunications Equipment Industry," Econometrica, Econometric Society, vol. 64(6), pages 1263-1297, November.
    34. Olivier Deschenes & Michael Greenstone & Jonathan Guryan, 2009. "Climate Change and Birth Weight," American Economic Review, American Economic Association, vol. 99(2), pages 211-217, May.
    35. Chang-Tai Hsieh & Peter J. Klenow, 2009. "Misallocation and Manufacturing TFP in China and India," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 124(4), pages 1403-1448.
    36. Tamma Carleton & Amir Jina & Michael Delgado & Michael Greenstone & Trevor Houser & Solomon Hsiang & Andrew Hultgren & Robert E Kopp & Kelly E McCusker & Ishan Nath & James Rising & Ashwin Rode & Hee , 2022. "Valuing the Global Mortality Consequences of Climate Change Accounting for Adaptation Costs and Benefits [Distributive Politics and Economic Growth]," The Quarterly Journal of Economics, Oxford University Press, vol. 137(4), pages 2037-2105.
    37. Viral V Acharya & Tim Eisert & Christian Eufinger & Christian Hirsch, 2019. "Whatever It Takes: The Real Effects of Unconventional Monetary Policy," The Review of Financial Studies, Society for Financial Studies, vol. 32(9), pages 3366-3411.
    38. Joshua Graff Zivin & Solomon M. Hsiang & Matthew Neidell, 2018. "Temperature and Human Capital in the Short and Long Run," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 5(1), pages 77-105.
    39. Choi, In, 2001. "Unit root tests for panel data," Journal of International Money and Finance, Elsevier, vol. 20(2), pages 249-272, April.
    40. Melissa Dell & Benjamin F. Jones & Benjamin A. Olken, 2014. "What Do We Learn from the Weather? The New Climate-Economy Literature," Journal of Economic Literature, American Economic Association, vol. 52(3), pages 740-798, September.
    41. Raphael Calel & Sandra C. Chapman & David A. Stainforth & Nicholas W. Watkins, 2020. "Temperature variability implies greater economic damages from climate change," Nature Communications, Nature, vol. 11(1), pages 1-5, December.
    42. Dani Rodrik & Arvind Subramanian & Francesco Trebbi, 2004. "Institutions Rule: The Primacy of Institutions Over Geography and Integration in Economic Development," Journal of Economic Growth, Springer, vol. 9(2), pages 131-165, June.
    43. Kalkuhl, Matthias & Wenz, Leonie, 2020. "The impact of climate conditions on economic production. Evidence from a global panel of regions," Journal of Environmental Economics and Management, Elsevier, vol. 103(C).
    44. Bilal, Adrien & Känzig, Diego, 2024. "The Macroeconomic Impact of Climate Change: Global vs. Local Temperature," CEPR Discussion Papers 19203, C.E.P.R. Discussion Papers.
    45. Melissa Dell & Benjamin F. Jones & Benjamin A. Olken, 2012. "Temperature Shocks and Economic Growth: Evidence from the Last Half Century," American Economic Journal: Macroeconomics, American Economic Association, vol. 4(3), pages 66-95, July.
    46. Athey, Susan & Imbens, Guido W., 2019. "Machine Learning Methods Economists Should Know About," Research Papers 3776, Stanford University, Graduate School of Business.
    47. James Levinsohn & Amil Petrin, 2003. "Estimating Production Functions Using Inputs to Control for Unobservables," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 70(2), pages 317-341.
    48. Sebnem Kalemli-Ozcan & Bent Sorensen & Carolina Villegas-Sanchez & Vadym Volosovych & Sevcan Yesiltas, 2015. "How to Construct Nationally Representative Firm Level Data from the Orbis Global Database: New Facts and Aggregate Implications," NBER Working Papers 21558, National Bureau of Economic Research, Inc.
    49. Burke, M. & Craxton, M. & Kolstad, C.D. & Onda, C. & Allcott, H. & Baker, E. & Barrage, L. & Carson, R. & Gillingham, K. & Graff-Zivin, J. & Greenstone, M. & Hallegatte, S. & Hanemann, W.M. & Heal, G., 2016. "Opportunities for advances in climate change economics," ISU General Staff Papers 3565, Iowa State University, Department of Economics.
    50. Groom, Ben & Linsenmeier, Manuel & Roth, Sefi, 2023. "Some like it cold: Heterogeneity in the temperature-economy relationships of Europe," SocArXiv tcnad, Center for Open Science.
    51. Kevin Rennert & Frank Errickson & Brian C. Prest & Lisa Rennels & Richard G. Newell & William Pizer & Cora Kingdon & Jordan Wingenroth & Roger Cooke & Bryan Parthum & David Smith & Kevin Cromar & Dela, 2022. "Comprehensive evidence implies a higher social cost of CO2," Nature, Nature, vol. 610(7933), pages 687-692, October.
    52. James Rising & Marco Tedesco & Franziska Piontek & David A. Stainforth, 2022. "The missing risks of climate change," Nature, Nature, vol. 610(7933), pages 643-651, October.
    53. repec:cdl:econwp:qt3g72r0zv is not listed on IDEAS
    54. Marshall Burke & Felipe González & Patrick Baylis & Sam Heft-Neal & Ceren Baysan & Sanjay Basu & Solomon Hsiang, 2018. "Higher temperatures increase suicide rates in the United States and Mexico," Nature Climate Change, Nature, vol. 8(8), pages 723-729, August.
    55. Katharine Ricke & Laurent Drouet & Ken Caldeira & Massimo Tavoni, 2019. "Author Correction: Country-level social cost of carbon," Nature Climate Change, Nature, vol. 9(7), pages 567-567, July.
    56. Daron Acemoglu & Simon Johnson & James A. Robinson, 2002. "Reversal of Fortune: Geography and Institutions in the Making of the Modern World Income Distribution," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 117(4), pages 1231-1294.
    57. Olivier Deschênes & Michael Greenstone, 2011. "Climate Change, Mortality, and Adaptation: Evidence from Annual Fluctuations in Weather in the US," American Economic Journal: Applied Economics, American Economic Association, vol. 3(4), pages 152-185, October.
    58. Ryan A. Decker & John Haltiwanger & Ron S. Jarmin & Javier Miranda, 2016. "Declining Business Dynamism: What We Know and the Way Forward," American Economic Review, American Economic Association, vol. 106(5), pages 203-207, May.
    59. Leeb, Hannes & Pötscher, Benedikt M., 2005. "Model Selection And Inference: Facts And Fiction," Econometric Theory, Cambridge University Press, vol. 21(1), pages 21-59, February.
    60. Simon Dietz & Nicholas Stern, 2015. "Endogenous Growth, Convexity of Damage and Climate Risk: How Nordhaus' Framework Supports Deep Cuts in Carbon Emissions," Economic Journal, Royal Economic Society, vol. 0(583), pages 574-620, March.
    61. Linsenmeier, Manuel, 2023. "Temperature variability and long-run economic development," Journal of Environmental Economics and Management, Elsevier, vol. 121(C).
    62. Susan Athey & Guido W. Imbens, 2019. "Machine Learning Methods That Economists Should Know About," Annual Review of Economics, Annual Reviews, vol. 11(1), pages 685-725, August.
    63. Achyuta Adhvaryu & Namrata Kala & Anant Nyshadham, 2022. "Management and Shocks to Worker Productivity," Journal of Political Economy, University of Chicago Press, vol. 130(1), pages 1-47.
    64. Granger, C. W. J. & Newbold, P., 1974. "Spurious regressions in econometrics," Journal of Econometrics, Elsevier, vol. 2(2), pages 111-120, July.
    65. Maximilian Kotz & Anders Levermann & Leonie Wenz, 2024. "Author Correction: The economic commitment of climate change," Nature, Nature, vol. 631(8020), pages 9-9, July.
    66. Maximilian Auffhammer, 2018. "Quantifying Economic Damages from Climate Change," Journal of Economic Perspectives, American Economic Association, vol. 32(4), pages 33-52, Fall.
    67. Solomon Hsiang, 2016. "Climate Econometrics," Annual Review of Resource Economics, Annual Reviews, vol. 8(1), pages 43-75, October.
    68. Marc J. Melitz, 2003. "The Impact of Trade on Intra-Industry Reallocations and Aggregate Industry Productivity," Econometrica, Econometric Society, vol. 71(6), pages 1695-1725, November.
    69. Maximilian Kotz & Leonie Wenz & Annika Stechemesser & Matthias Kalkuhl & Anders Levermann, 2021. "Day-to-day temperature variability reduces economic growth," Nature Climate Change, Nature, vol. 11(4), pages 319-325, April.
    70. Sørensen, Bent E & Kalemli-Özcan, Sebnem & Volosovych, Vadym & Villegas-Sanchez, Carolina & Yesiltas, Sevcan, 2015. "How to construct nationally representative firm level data from the ORBIS global database," CEPR Discussion Papers 10829, C.E.P.R. Discussion Papers.
    71. Joshua Graff Zivin & Matthew E. Kahn, 2016. "Industrial Productivity in a Hotter World: The Aggregate Implications of Heterogeneous Firm Investment in Air Conditioning," NBER Working Papers 22962, National Bureau of Economic Research, Inc.
    72. Tatyana Deryugina & Solomon Hsiang, 2017. "The Marginal Product of Climate," NBER Working Papers 24072, National Bureau of Economic Research, Inc.
    73. James M. Murphy & David M. H. Sexton & David N. Barnett & Gareth S. Jones & Mark J. Webb & Matthew Collins & David A. Stainforth, 2004. "Quantification of modelling uncertainties in a large ensemble of climate change simulations," Nature, Nature, vol. 430(7001), pages 768-772, August.
    74. Wooldridge, Jeffrey M., 2009. "On estimating firm-level production functions using proxy variables to control for unobservables," Economics Letters, Elsevier, vol. 104(3), pages 112-114, September.
    75. Burke, M & Craxton, M & Kolstad, CD & Onda, C & Allcott, H & Baker, E & Barrage, L & Carson, R & Gillingham, K & Graf-Zivin, J & Greenstone, M & Hallegatte, S & Hanemann, WM & Heal, G & Hsiang, S & Jo, 2016. "Opportunities for advances in climate change economics," University of California at Santa Barbara, Recent Works in Economics qt4tc5d9pb, Department of Economics, UC Santa Barbara.
    76. Solomon M. Hsiang, 2016. "Climate Econometrics," NBER Working Papers 22181, National Bureau of Economic Research, Inc.
    77. Ishan B. Nath, 2020. "The Food Problem and the Aggregate Productivity Consequences of Climate Change," NBER Working Papers 27297, National Bureau of Economic Research, Inc.
    78. Edward Miguel & Shanker Satyanath & Ernest Sergenti, 2004. "Economic Shocks and Civil Conflict: An Instrumental Variables Approach," Journal of Political Economy, University of Chicago Press, vol. 112(4), pages 725-753, August.
    79. Jacopo Ponticelli & Qiping Xu & Stefan Zeume, 2023. "Temperature and Local Industry Concentration," Working Papers 23-51, Center for Economic Studies, U.S. Census Bureau.
    80. Jacopo Ponticelli & Qiping Xu & Stefan Zeume, 2023. "Temperature, Adaptation, and Local Industry Concentration," NBER Working Papers 31533, National Bureau of Economic Research, Inc.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chang, Jun-Jie & Mi, Zhifu & Wei, Yi-Ming, 2023. "Temperature and GDP: A review of climate econometrics analysis," Structural Change and Economic Dynamics, Elsevier, vol. 66(C), pages 383-392.
    2. Benmir, Ghassane & Mori, Aditya & Roman, Josselin & Tarsia, Romano, 2025. "Beneath the trees: the influence of natural capital on shadow price dynamics in a macroeconomic model with uncertainty," LSE Research Online Documents on Economics 128516, London School of Economics and Political Science, LSE Library.
    3. Kalkuhl, Matthias & Wenz, Leonie, 2020. "The impact of climate conditions on economic production. Evidence from a global panel of regions," Journal of Environmental Economics and Management, Elsevier, vol. 103(C).
    4. Gagliardi, Nicola & Grinza, Elena & Rycx, François, 2024. "The Productivity Impact of Global Warming: Firm-Level Evidence for Europe," GLO Discussion Paper Series 1485, Global Labor Organization (GLO).
    5. Moustafa Feriga & Nancy Lozano Gracia & Pieter Serneels, 2025. "The Impact of Climate Change on Work: Lessons for Developing Countries," The World Bank Research Observer, World Bank, vol. 40(1), pages 104-146.
    6. Newell, Richard G. & Prest, Brian C. & Sexton, Steven E., 2021. "The GDP-Temperature relationship: Implications for climate change damages," Journal of Environmental Economics and Management, Elsevier, vol. 108(C).
    7. Richard S.J. Tol, 2020. "The Economic Impact of Weather and Climate," Video Library 2094, Department of Economics, University of Sussex Business School.
    8. Bento, Antonio M. & Miller, Noah & Mookerjee, Mehreen & Severnini, Edson, 2023. "A unifying approach to measuring climate change impacts and adaptation," Journal of Environmental Economics and Management, Elsevier, vol. 121(C).
    9. Figari, Sebastián, 2025. "Climate change response: Input adjustment in agriculture," Journal of Development Economics, Elsevier, vol. 175(C).
    10. Harding, Anthony & Moreno-Cruz, Juan & Quaas, Martin & Rickels, Wilfried & Smulders, Sjak, 2025. "Distribution of climate damages in convergence-consistent growth projections," Open Access Publications from Kiel Institute for the World Economy 323984, Kiel Institute for the World Economy (IfW Kiel).
    11. Meierrieks, Daniel & Stadelmann, David, 2024. "Is temperature adversely related to economic development? Evidence on the short-run and the long-run links from sub-national data," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 136, pages 1-18.
    12. Cui, Xiaomeng & Gafarov, Bulat & Ghanem, Dalia & Kuffner, Todd, 2024. "On model selection criteria for climate change impact studies," Journal of Econometrics, Elsevier, vol. 239(1).
    13. Harding, Anthony & Moreno-Cruz, Juan & Quaas, Martin & Rickels, Wilfried & Smulders, Sjak, 2025. "Distribution of climate damages in convergence-consistent growth projections," Energy Economics, Elsevier, vol. 149(C).
    14. Olper, Alessandro & Maugeri, Maurizio & Manara, Veronica & Raimondi, Valentina, 2021. "Weather, climate and economic outcomes: Evidence from Italy," Ecological Economics, Elsevier, vol. 189(C).
    15. Linsenmeier, Manuel, 2023. "Temperature variability and long-run economic development," Journal of Environmental Economics and Management, Elsevier, vol. 121(C).
    16. Pierre Mérel & Matthew Gammans, 2021. "Climate Econometrics: Can the Panel Approach Account for Long‐Run Adaptation?," American Journal of Agricultural Economics, John Wiley & Sons, vol. 103(4), pages 1207-1238, August.
    17. Adrien Bilal & James H. Stock, 2025. "A Guide to Macroeconomics and Climate Change," NBER Working Papers 33567, National Bureau of Economic Research, Inc.
    18. Duan, Hongbo & Yuan, Deyu & Cai, Zongwu & Wang, Shouyang, 2022. "Valuing the impact of climate change on China’s economic growth," Economic Analysis and Policy, Elsevier, vol. 74(C), pages 155-174.
    19. Lyu, Zhuoyang & Yu, Li & Liu, Chen & Ma, Tiemeng, 2024. "When temperatures matter: Extreme heat and labor share," Energy Economics, Elsevier, vol. 138(C).
    20. Sam Cosaert & Adrián Nieto & Konstantinos Tatsiramos, 2023. "Temperature and Joint Time Use," CESifo Working Paper Series 10464, CESifo.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    JEL classification:

    • D24 - Microeconomics - - Production and Organizations - - - Production; Cost; Capital; Capital, Total Factor, and Multifactor Productivity; Capacity
    • O13 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - Agriculture; Natural Resources; Environment; Other Primary Products
    • O14 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - Industrialization; Manufacturing and Service Industries; Choice of Technology
    • O52 - Economic Development, Innovation, Technological Change, and Growth - - Economywide Country Studies - - - Europe
    • Q51 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Valuation of Environmental Effects
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming
    • R11 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General Regional Economics - - - Regional Economic Activity: Growth, Development, Environmental Issues, and Changes

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ehl:lserod:124251. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: LSERO Manager (email available below). General contact details of provider: https://edirc.repec.org/data/lsepsuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.