IDEAS home Printed from https://ideas.repec.org/p/iza/izadps/dp13290.html
   My bibliography  Save this paper

A Unifying Approach to Measuring Climate Change Impacts and Adaptation

Author

Listed:
  • Bento, Antonio M.

    (University of Southern California)

  • Miller, Noah

    (University of Southern California)

  • Mookerjee, Mehreen

    (Zayed University)

  • Severnini, Edson R.

    (Carnegie Mellon University)

Abstract

We develop a unifying approach to estimating climate impacts and adaptation, and apply it to study the impact of climate change on local air pollution. Economic agents are usually constrained when responding to daily weather shocks, but may adjust to long-run climatic changes. By exploiting simultaneously variation in weather and climatic changes, we identify both the short- and long-run impacts on economic outcomes, and measure adaptation directly as the difference between those responses. As a result, we identify adaptation without making extrapolations of weather responses over time or space, and overcome prior studies' biases in the estimates of climate adaptation.

Suggested Citation

  • Bento, Antonio M. & Miller, Noah & Mookerjee, Mehreen & Severnini, Edson R., 2020. "A Unifying Approach to Measuring Climate Change Impacts and Adaptation," IZA Discussion Papers 13290, Institute of Labor Economics (IZA).
  • Handle: RePEc:iza:izadps:dp13290
    as

    Download full text from publisher

    File URL: https://docs.iza.org/dp13290.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Michael C. Lovell, 1963. "Seasonal Adjustment of Economic Time Series and Multiple Regression," Cowles Foundation Discussion Papers 151, Cowles Foundation for Research in Economics, Yale University.
    2. Marshall Burke & Kyle Emerick, 2016. "Adaptation to Climate Change: Evidence from US Agriculture," American Economic Journal: Economic Policy, American Economic Association, vol. 8(3), pages 106-140, August.
    3. Matthew Neidell, 2009. "Information, Avoidance Behavior, and Health: The Effect of Ozone on Asthma Hospitalizations," Journal of Human Resources, University of Wisconsin Press, vol. 44(2).
    4. Joshua D. Angrist & Jörn-Steffen Pischke, 2009. "Mostly Harmless Econometrics: An Empiricist's Companion," Economics Books, Princeton University Press, edition 1, number 8769.
    5. Wolfram Schlenker & W. Michael Hanemann & Anthony C. Fisher, 2005. "Will U.S. Agriculture Really Benefit from Global Warming? Accounting for Irrigation in the Hedonic Approach," American Economic Review, American Economic Association, vol. 95(1), pages 395-406, March.
    6. Olivier Deschênes & Michael Greenstone, 2007. "The Economic Impacts of Climate Change: Evidence from Agricultural Output and Random Fluctuations in Weather," American Economic Review, American Economic Association, vol. 97(1), pages 354-385, March.
    7. Xavier Gabaix & David Laibson, 2018. "Shrouded attributes, consumer myopia and information suppression in competitive markets," Chapters, in: Victor J. Tremblay & Elizabeth Schroeder & Carol Horton Tremblay (ed.), Handbook of Behavioral Industrial Organization, chapter 3, pages 40-74, Edward Elgar Publishing.
    8. Peter D. Howe & Matto Mildenberger & Jennifer R. Marlon & Anthony Leiserowitz, 2015. "Geographic variation in opinions on climate change at state and local scales in the USA," Nature Climate Change, Nature, vol. 5(6), pages 596-603, June.
    9. Melissa Dell & Benjamin F. Jones & Benjamin A. Olken, 2009. "Temperature and Income: Reconciling New Cross-Sectional and Panel Estimates," American Economic Review, American Economic Association, vol. 99(2), pages 198-204, May.
    10. Charles D. Kolstad & Frances C. Moore, 2020. "Estimating the Economic Impacts of Climate Change Using Weather Observations," Review of Environmental Economics and Policy, University of Chicago Press, vol. 14(1), pages 1-24.
    11. Melissa Dell & Benjamin F. Jones & Benjamin A. Olken, 2014. "What Do We Learn from the Weather? The New Climate-Economy Literature," Journal of Economic Literature, American Economic Association, vol. 52(3), pages 740-798, September.
    12. Marianne Baxter & Robert G. King, 1999. "Measuring Business Cycles: Approximate Band-Pass Filters For Economic Time Series," The Review of Economics and Statistics, MIT Press, vol. 81(4), pages 575-593, November.
    13. Robert O. Mendelsohn & Emanuele Massetti, 2017. "The Use of Cross-Sectional Analysis to Measure Climate Impacts on Agriculture: Theory and Evidence," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 11(2), pages 280-298.
    14. Melissa Dell & Benjamin F. Jones & Benjamin A. Olken, 2012. "Temperature Shocks and Economic Growth: Evidence from the Last Half Century," American Economic Journal: Macroeconomics, American Economic Association, vol. 4(3), pages 66-95, July.
    15. Elodie Blanc & Wolfram Schlenker, 2017. "The Use of Panel Models in Assessments of Climate Impacts on Agriculture," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 11(2), pages 258-279.
    16. Garth Heutel & Juan Moreno-Cruz & Katharine Ricke, 2016. "Climate Engineering Economics," Annual Review of Resource Economics, Annual Reviews, vol. 8(1), pages 99-118, October.
    17. Olivier Deschênes & Michael Greenstone, 2011. "Climate Change, Mortality, and Adaptation: Evidence from Annual Fluctuations in Weather in the US," American Economic Journal: Applied Economics, American Economic Association, vol. 3(4), pages 152-185, October.
    18. Olivier Deschênes & Michael Greenstone & Joseph S. Shapiro, 2017. "Defensive Investments and the Demand for Air Quality: Evidence from the NOx Budget Program," American Economic Review, American Economic Association, vol. 107(10), pages 2958-2989, October.
    19. Maximilian Auffhammer & Ryan Kellogg, 2011. "Clearing the Air? The Effects of Gasoline Content Regulation on Air Quality," American Economic Review, American Economic Association, vol. 101(6), pages 2687-2722, October.
    20. Arthur F. Burns & Wesley C. Mitchell, 1946. "Measuring Business Cycles," NBER Books, National Bureau of Economic Research, Inc, number burn46-1, June.
    21. Alan Barreca & Karen Clay & Olivier Deschenes & Michael Greenstone & Joseph S. Shapiro, 2016. "Adapting to Climate Change: The Remarkable Decline in the US Temperature-Mortality Relationship over the Twentieth Century," Journal of Political Economy, University of Chicago Press, vol. 124(1), pages 105-159.
    22. Maximilian Auffhammer, 2018. "Climate Adaptive Response Estimation: Short And Long Run Impacts Of Climate Change On Residential Electricity and Natural Gas Consumption Using Big Data," NBER Working Papers 24397, National Bureau of Economic Research, Inc.
    23. Bleakley, Hoyt & Hong, Sok Chul, 2017. "Adapting to the Weather: Lessons from U.S. History," The Journal of Economic History, Cambridge University Press, vol. 77(3), pages 756-795, September.
    24. Pretis, Felix, 2020. "Econometric modelling of climate systems: The equivalence of energy balance models and cointegrated vector autoregressions," Journal of Econometrics, Elsevier, vol. 214(1), pages 256-273.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xun Su & Minpeng Chen, 2022. "Econometric Approaches That Consider Farmers’ Adaptation in Estimating the Impacts of Climate Change on Agriculture: A Review," Sustainability, MDPI, vol. 14(21), pages 1-23, October.
    2. Guglielmo Zappalà, 2023. "Drought Exposure and Accuracy: Motivated Reasoning in Climate Change Beliefs," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 85(3), pages 649-672, August.
    3. Colelli, Francesco Pietro & Wing, Ian Sue & De Cian, Enrica, 2023. "Intensive and extensive margins of the peak load: Measuring adaptation with mixed frequency panel data," Energy Economics, Elsevier, vol. 126(C).
    4. Pestel, Nico & Oswald, Andrew J., 2021. "Why Do Relatively Few Economists Work on Climate Change? A Survey," IZA Discussion Papers 14885, Institute of Labor Economics (IZA).
    5. Guglielmo Zappalà, 2022. "Drought exposure and accuracy: Motivated reasoning in climate change beliefs," Working Papers 2022.02, FAERE - French Association of Environmental and Resource Economists.
    6. Jelnov, Pavel, 2021. "Sunset Long Shadows: Time, Crime, and Perception of Change," IZA Discussion Papers 14770, Institute of Labor Economics (IZA).
    7. Luis Guillermo Becerra-Valbuena, 2021. "Droughts and Agricultural Adaptation to Climate Change," PSE Working Papers halshs-03420657, HAL.
    8. Wang, Di & Zhang, Peng & Chen, Shuai & Zhang, Ning, 2024. "Adaptation to temperature extremes in Chinese agriculture, 1981 to 2010," Journal of Development Economics, Elsevier, vol. 166(C).
    9. Luis Guillermo Becerra-Valbuena, 2021. "Droughts and Agricultural Adaptation to Climate Change," Working Papers halshs-03420657, HAL.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bento, Antonio M. & Miller, Noah & Mookerjee, Mehreen & Severnini, Edson, 2023. "A unifying approach to measuring climate change impacts and adaptation," Journal of Environmental Economics and Management, Elsevier, vol. 121(C).
    2. Bareille, François & Chakir, Raja, 2023. "The impact of climate change on agriculture: A repeat-Ricardian analysis," Journal of Environmental Economics and Management, Elsevier, vol. 119(C).
    3. Chang, Jun-Jie & Mi, Zhifu & Wei, Yi-Ming, 2023. "Temperature and GDP: A review of climate econometrics analysis," Structural Change and Economic Dynamics, Elsevier, vol. 66(C), pages 383-392.
    4. Antonio M. Bento & Noah Miller & Mehreen Mookerjee & Edson Severnini, 2023. "Incidental Adaptation: The Role of Non-climate Regulations," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 86(3), pages 305-343, November.
    5. Mérel, Pierre & Paroissien, Emmanuel & Gammans, Matthew, 2024. "Sufficient statistics for climate change counterfactuals," Journal of Environmental Economics and Management, Elsevier, vol. 124(C).
    6. Pierre Mérel & Matthew Gammans, 2021. "Climate Econometrics: Can the Panel Approach Account for Long‐Run Adaptation?," American Journal of Agricultural Economics, John Wiley & Sons, vol. 103(4), pages 1207-1238, August.
    7. R. Jisung Park & Joshua Goodman & Michael Hurwitz & Jonathan Smith, 2020. "Heat and Learning," American Economic Journal: Economic Policy, American Economic Association, vol. 12(2), pages 306-339, May.
    8. Duan, Hongbo & Yuan, Deyu & Cai, Zongwu & Wang, Shouyang, 2022. "Valuing the impact of climate change on China’s economic growth," Economic Analysis and Policy, Elsevier, vol. 74(C), pages 155-174.
    9. Chiara Falco & Franco Donzelli & Alessandro Olper, 2018. "Climate Change, Agriculture and Migration: A Survey," Sustainability, MDPI, vol. 10(5), pages 1-21, May.
    10. Emediegwu, Lotanna E. & Ubabukoh, Chisom L., 2023. "Re-examining the impact of annual weather fluctuations on global livestock production," Ecological Economics, Elsevier, vol. 204(PA).
    11. Olivier Deschenes & Kyle C. Meng, 2018. "Quasi-Experimental Methods in Environmental Economics: Opportunities and Challenges," NBER Working Papers 24903, National Bureau of Economic Research, Inc.
    12. Hsing-Hsiang Huang & Michael R. Moore, 2018. "Farming under Weather Risk: Adaptation, Moral Hazard, and Selection on Moral Hazard," NBER Chapters, in: Agricultural Productivity and Producer Behavior, pages 77-124, National Bureau of Economic Research, Inc.
    13. Emediegwu, Lotanna E. & Wossink, Ada & Hall, Alastair, 2022. "The impacts of climate change on agriculture in sub-Saharan Africa: A spatial panel data approach," World Development, Elsevier, vol. 158(C).
    14. Severen, Christopher & Costello, Christopher & Deschênes, Olivier, 2018. "A Forward-Looking Ricardian Approach: Do land markets capitalize climate change forecasts?," Journal of Environmental Economics and Management, Elsevier, vol. 89(C), pages 235-254.
    15. Liu, Ziheng & Lu, Qinan, 2023. "Ozone stress and crop harvesting failure: Evidence from US food production," Food Policy, Elsevier, vol. 121(C).
    16. Richard S.J. Tol, 2020. "The Economic Impact of Weather and Climate," Video Library 2094, Department of Economics, University of Sussex Business School.
    17. Auffhammer, Maximilian, 2022. "Climate Adaptive Response Estimation: Short and long run impacts of climate change on residential electricity and natural gas consumption," Journal of Environmental Economics and Management, Elsevier, vol. 114(C).
    18. Charles D. Kolstad & Frances C. Moore, 2020. "Estimating the Economic Impacts of Climate Change Using Weather Observations," Review of Environmental Economics and Policy, University of Chicago Press, vol. 14(1), pages 1-24.
    19. Arbex, Marcelo & Batu, Michael, 2020. "What if people value nature? Climate change and welfare costs," Resource and Energy Economics, Elsevier, vol. 61(C).
    20. Desbordes, Rodolphe & Eberhardt, Markus, 2024. "Climate change and economic prosperity: Evidence from a flexible damage function," Journal of Environmental Economics and Management, Elsevier, vol. 125(C).

    More about this item

    Keywords

    local air pollution; adaptation; climate impacts; climate change estimation methods; ambient ozone concentration; climate penalty on ozone;
    All these keywords.

    JEL classification:

    • Q53 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Air Pollution; Water Pollution; Noise; Hazardous Waste; Solid Waste; Recycling
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:iza:izadps:dp13290. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Holger Hinte (email available below). General contact details of provider: https://edirc.repec.org/data/izaaade.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.