IDEAS home Printed from https://ideas.repec.org/a/uwp/jhriss/v50y2015i2p317-372.html
   My bibliography  Save this article

A Practitioner’s Guide to Cluster-Robust Inference

Author

Listed:
  • A. Colin Cameron
  • Douglas L. Miller

Abstract

We consider statistical inference for regression when data are grouped into clusters, with regression model errors independent across clusters but correlated within clusters. Examples include data on individuals with clustering on village or region or other category such as industry, and state-year differences-in-differences studies with clustering on state. In such settings, default standard errors can greatly overstate estimator precision. Instead, if the number of clusters is large, statistical inference after OLS should be based on cluster-robust standard errors. We outline the basic method as well as many complications that can arise in practice. These include cluster-specific fixed effects, few clusters, multiway clustering, and estimators other than OLS.

Suggested Citation

  • A. Colin Cameron & Douglas L. Miller, 2015. "A Practitioner’s Guide to Cluster-Robust Inference," Journal of Human Resources, University of Wisconsin Press, vol. 50(2), pages 317-372.
  • Handle: RePEc:uwp:jhriss:v:50:y:2015:i:2:p:317-372
    as

    Download full text from publisher

    File URL: http://jhr.uwpress.org/cgi/reprint/50/2/317
    Download Restriction: A subscripton is required to access pdf files. Pay per article is available.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Keith Finlay & Leandro M. Magnusson, 2009. "Implementing weak-instrument robust tests for a general class of instrumental-variables models," Stata Journal, StataCorp LP, vol. 9(3), pages 398-421, September.
    2. Kline Patrick & Santos Andres, 2012. "A Score Based Approach to Wild Bootstrap Inference," Journal of Econometric Methods, De Gruyter, vol. 1(1), pages 23-41, August.
    3. Hausman, Jerry & Kuersteiner, Guido, 2008. "Difference in difference meets generalized least squares: Higher order properties of hypotheses tests," Journal of Econometrics, Elsevier, vol. 144(2), pages 371-391, June.
    4. Andrew V. Carter & Kevin T. Schnepel & Douglas G. Steigerwald, 2017. "Asymptotic Behavior of a t -Test Robust to Cluster Heterogeneity," The Review of Economics and Statistics, MIT Press, vol. 99(4), pages 698-709, July.
    5. John C. Driscoll & Aart C. Kraay, 1998. "Consistent Covariance Matrix Estimation With Spatially Dependent Panel Data," The Review of Economics and Statistics, MIT Press, vol. 80(4), pages 549-560, November.
    6. Joshua D. Angrist & Jörn-Steffen Pischke, 2009. "Mostly Harmless Econometrics: An Empiricist's Companion," Economics Books, Princeton University Press, edition 1, number 8769, October.
    7. James G. MacKinnon & Matthew D. Webb, 2017. "Wild Bootstrap Inference for Wildly Different Cluster Sizes," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(2), pages 233-254, March.
    8. Karla Hemming & Jen Marsh, 2013. "A menu-driven facility for sample-size calculations in cluster randomized controlled trials," Stata Journal, StataCorp LP, vol. 13(1), pages 114-135, March.
    9. Fitzsimons, Emla & Malde, Bansi & Mesnard, Alice & Vera-Hernández, Marcos, 2012. "Household Responses to Information on Child Nutrition: Experimental Evidence from Malawi," CEPR Discussion Papers 8915, C.E.P.R. Discussion Papers.
    10. Matthew D. Webb, 2014. "Reworking Wild Bootstrap Based Inference For Clustered Errors," Working Paper 1315, Economics Department, Queen's University.
    11. Thomas Barrios & Rebecca Diamond & Guido W. Imbens & Michal Kolesár, 2012. "Clustering, Spatial Correlations, and Randomization Inference," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(498), pages 578-591, June.
    12. Davis, Peter, 2002. "Estimating multi-way error components models with unbalanced data structures," Journal of Econometrics, Elsevier, vol. 106(1), pages 67-95, January.
    13. MacKinnon, James G. & White, Halbert, 1985. "Some heteroskedasticity-consistent covariance matrix estimators with improved finite sample properties," Journal of Econometrics, Elsevier, vol. 29(3), pages 305-325, September.
    14. Bester, C. Alan & Conley, Timothy G. & Hansen, Christian B., 2011. "Inference with dependent data using cluster covariance estimators," Journal of Econometrics, Elsevier, vol. 165(2), pages 137-151.
    15. Bhattacharya, Debopam, 2005. "Asymptotic inference from multi-stage samples," Journal of Econometrics, Elsevier, vol. 126(1), pages 145-171, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. A. Colin Cameron & Douglas L. Miller, 2010. "Robust Inference with Clustered Data," Working Papers 106, University of California, Davis, Department of Economics.
    2. A. Colin Cameron & Douglas L. Miller, 2010. "Robust Inference with Clustered Data," Working Papers 318, University of California, Davis, Department of Economics.
    3. James G. MacKinnon & Morten Ø. Nielsen & Matthew D. Webb, 2019. "Wild Bootstrap and Asymptotic Inference with Multiway Clustering," Working Paper 1415, Economics Department, Queen's University.
    4. Ivan A. Canay & Andres Santos & Azeem M. Shaikh, 2018. "The wild bootstrap with a "small" number of "large" clusters," CeMMAP working papers CWP27/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    5. James G. MacKinnon & Matthew D. Webb, 2017. "Pitfalls When Estimating Treatment Effects Using Clustered Data," Working Paper 1387, Economics Department, Queen's University.
    6. James G. MacKinnon & Matthew D. Webb, 2020. "When and How to Deal with Clustered Errors in Regression Models," Working Paper 1421, Economics Department, Queen's University.
    7. James G. MacKinnon & Matthew D. Webb & Morten Ø. Nielsen, 2017. "Bootstrap And Asymptotic Inference With Multiway Clustering," Working Paper 1386, Economics Department, Queen's University.
    8. David Roodman & James G. MacKinnon & Morten Ørregaard Nielsen & Matthew D. Webb, 2019. "Fast and wild: Bootstrap inference in Stata using boottest," Stata Journal, StataCorp LP, vol. 19(1), pages 4-60, March.
    9. James G. MacKinnon, 2019. "How cluster‐robust inference is changing applied econometrics," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 52(3), pages 851-881, August.
    10. Hansen, Bruce E. & Lee, Seojeong, 2019. "Asymptotic theory for clustered samples," Journal of Econometrics, Elsevier, vol. 210(2), pages 268-290.
    11. Antoine A. Djogbenou & James G. MacKinnon & Morten Ø. Nielsen, 2017. "Validity Of Wild Bootstrap Inference With Clustered Errors," Working Paper 1383, Economics Department, Queen's University.
    12. Brewer Mike & Crossley Thomas F. & Joyce Robert, 2018. "Inference with Difference-in-Differences Revisited," Journal of Econometric Methods, De Gruyter, vol. 7(1), pages 1-16, January.
    13. Djogbenou, Antoine A. & MacKinnon, James G. & Nielsen, Morten Ørregaard, 2019. "Asymptotic theory and wild bootstrap inference with clustered errors," Journal of Econometrics, Elsevier, vol. 212(2), pages 393-412.
    14. MacKinnon, James G. & Webb, Matthew D., 2020. "Randomization inference for difference-in-differences with few treated clusters," Journal of Econometrics, Elsevier, vol. 218(2), pages 435-450.
    15. Hagemann, Andreas, 2019. "Placebo inference on treatment effects when the number of clusters is small," Journal of Econometrics, Elsevier, vol. 213(1), pages 190-209.
    16. Frank Davenport, 2017. "Estimating standard errors in spatial panel models with time varying spatial correlation," Papers in Regional Science, Wiley Blackwell, vol. 96, pages 155-177, March.
    17. Wang, Wenjie, 2021. "Wild Bootstrap for Instrumental Variables Regression with Weak Instruments and Few Clusters," MPRA Paper 106227, University Library of Munich, Germany.
    18. Chor, Elise & Andresen, Martin Eckhoff & Kalil, Ariel, 2016. "The impact of universal prekindergarten on family behavior and child outcomes," Economics of Education Review, Elsevier, vol. 55(C), pages 168-181.
    19. James G. MacKinnon & Matthew D. Webb, 2017. "Wild Bootstrap Inference for Wildly Different Cluster Sizes," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(2), pages 233-254, March.
    20. Bobonis, Gustavo J. & Stabile, Mark & Tovar, Leonardo, 2020. "Military training exercises, pollution, and their consequences for health," Journal of Health Economics, Elsevier, vol. 73(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:uwp:jhriss:v:50:y:2015:i:2:p:317-372. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (). General contact details of provider: http://jhr.uwpress.org/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.