IDEAS home Printed from https://ideas.repec.org/a/tpr/restat/v90y2008i3p414-427.html
   My bibliography  Save this article

Bootstrap-Based Improvements for Inference with Clustered Errors

Author

Listed:
  • A. Colin Cameron

    (Department of Economics, University of California-Davis)

  • Jonah B. Gelbach

    (Department of Economics, University of Arizona)

  • Douglas L. Miller

    (Department of Economics, University of California-Davis)

Abstract

Researchers have increasingly realized the need to account for within-group dependence in estimating standard errors of regression parameter estimates. The usual solution is to calculate cluster-robust standard errors that permit heteroskedasticity and within-cluster error correlation, but presume that the number of clusters is large. Standard asymptotic tests can over-reject, however, with few (five to thirty) clusters. We investigate inference using cluster bootstrap-t procedures that provide asymptotic refinement. These procedures are evaluated using Monte Carlos, including the example of Bertrand, Duflo, and Mullainathan (2004). Rejection rates of 10% using standard methods can be reduced to the nominal size of 5% using our methods. Copyright by the President and Fellows of Harvard College and the Massachusetts Institute of Technology.

Suggested Citation

  • A. Colin Cameron & Jonah B. Gelbach & Douglas L. Miller, 2008. "Bootstrap-Based Improvements for Inference with Clustered Errors," The Review of Economics and Statistics, MIT Press, vol. 90(3), pages 414-427, August.
  • Handle: RePEc:tpr:restat:v:90:y:2008:i:3:p:414-427
    as

    Download full text from publisher

    File URL: http://www.mitpressjournals.org/doi/pdf/10.1162/rest.90.3.414
    File Function: link to full text
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. A. Colin Cameron & Jonah B. Gelbach & Douglas L. Miller, 2008. "Bootstrap-Based Improvements for Inference with Clustered Errors," The Review of Economics and Statistics, MIT Press, vol. 90(3), pages 414-427, August.
    2. Davidson, Russell & Flachaire, Emmanuel, 2008. "The wild bootstrap, tamed at last," Journal of Econometrics, Elsevier, vol. 146(1), pages 162-169, September.
    3. Chesher, Andrew & Austin, Gerard, 1991. "The finite-sample distributions of heteroskedasticity robust Wald statistics," Journal of Econometrics, Elsevier, vol. 47(1), pages 153-173, January.
    4. Franklin Satterthwaite, 1941. "Synthesis of variance," Psychometrika, Springer;The Psychometric Society, vol. 6(5), pages 309-316, October.
    5. Rothenberg, Thomas J, 1988. "Approximate Power Functions for Some Robust Tests of Regression Coefficients," Econometrica, Econometric Society, vol. 56(5), pages 997-1019, September.
    6. James G. MacKinnon, 2002. "Bootstrap inference in econometrics," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 35(4), pages 615-645, November.
    7. Stephen G. Donald & Kevin Lang, 2007. "Inference with Difference-in-Differences and Other Panel Data," The Review of Economics and Statistics, MIT Press, vol. 89(2), pages 221-233, May.
    8. Jonathan Gruber & James M. Poterba, 1993. "Tax Incentives and the Decision to Purchase Health Insurance: Evidence from the Self-Employed," NBER Working Papers 4435, National Bureau of Economic Research, Inc.
    9. Davidson, Russell & MacKinnon, James G., 1999. "The Size Distortion Of Bootstrap Tests," Econometric Theory, Cambridge University Press, vol. 15(3), pages 361-376, June.
    10. Greenwald, Bruce C., 1983. "A general analysis of bias in the estimated standard errors of least squares coefficients," Journal of Econometrics, Elsevier, vol. 22(3), pages 323-338, August.
    11. Cameron,A. Colin & Trivedi,Pravin K., 2005. "Microeconometrics," Cambridge Books, Cambridge University Press, number 9780521848053, May.
    12. David Brownstone & Robert Valletta, 2001. "The Bootstrap and Multiple Imputations: Harnessing Increased Computing Power for Improved Statistical Tests," Journal of Economic Perspectives, American Economic Association, vol. 15(4), pages 129-141, Fall.
    13. Marianne Bertrand & Esther Duflo & Sendhil Mullainathan, 2004. "How Much Should We Trust Differences-In-Differences Estimates?," The Quarterly Journal of Economics, Oxford University Press, vol. 119(1), pages 249-275.
    14. Moulton, Brent R., 1986. "Random group effects and the precision of regression estimates," Journal of Econometrics, Elsevier, vol. 32(3), pages 385-397, August.
    15. Kloek, T, 1981. "OLS Estimation in a Model Where a Microvariable Is Explained by Aggregates and Contemporaneous Disturbances Are Equicorrelated," Econometrica, Econometric Society, vol. 49(1), pages 205-207, January.
    16. Joshua D. Angrist & Victor Lavy, 2002. "The Effect of High School Matriculation Awards: Evidence from Randomized Trials," NBER Working Papers 9389, National Bureau of Economic Research, Inc.
    17. Joel L. Horowitz, 1996. "Bootstrap Methods in Econometrics: Theory and Numerical Performance," Econometrics 9602009, University Library of Munich, Germany, revised 05 Mar 1996.
    18. Arellano, M, 1987. "Computing Robust Standard Errors for Within-Groups Estimators," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 49(4), pages 431-434, November.
    19. MacKinnon, James G. & White, Halbert, 1985. "Some heteroskedasticity-consistent covariance matrix estimators with improved finite sample properties," Journal of Econometrics, Elsevier, vol. 29(3), pages 305-325, September.
    20. Jeffrey M. Wooldridge, 2003. "Cluster-Sample Methods in Applied Econometrics," American Economic Review, American Economic Association, vol. 93(2), pages 133-138, May.
    21. Horowitz, Joel L., 2001. "The Bootstrap," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 5, chapter 52, pages 3159-3228, Elsevier.
    22. Michael Baker & Nicole M. Fortin, 2001. "Occupational gender composition and wages in Canada, 1987-1988," Canadian Journal of Economics, Canadian Economics Association, vol. 34(2), pages 345-376, May.
    23. Jonathan Gruber & James Poterba, 1994. "Tax Incentives and the Decision to Purchase Health Insurance: Evidence from the Self-Employed," The Quarterly Journal of Economics, Oxford University Press, vol. 109(3), pages 701-733.
    24. Moulton, Brent R, 1990. "An Illustration of a Pitfall in Estimating the Effects of Aggregate Variables on Micro Unit," The Review of Economics and Statistics, MIT Press, vol. 72(2), pages 334-338, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. A. Colin Cameron & Jonah B. Gelbach & Douglas L. Miller, 2008. "Bootstrap-Based Improvements for Inference with Clustered Errors," The Review of Economics and Statistics, MIT Press, vol. 90(3), pages 414-427, August.
    2. A. Colin Cameron & Douglas L. Miller, 2010. "Robust Inference with Clustered Data," Working Papers 106, University of California, Davis, Department of Economics.
    3. A. Colin Cameron & Douglas L. Miller, 2010. "Robust Inference with Clustered Data," Working Papers 318, University of California, Davis, Department of Economics.
    4. James G. MacKinnon & Matthew D. Webb, 2020. "When and How to Deal with Clustered Errors in Regression Models," Working Paper 1421, Economics Department, Queen's University.
    5. Cameron, A. Colin & Gelbach, Jonah B. & Miller, Douglas L., 2011. "Robust Inference With Multiway Clustering," Journal of Business & Economic Statistics, American Statistical Association, vol. 29(2), pages 238-249.
    6. Alberto Abadie & Susan Athey & Guido Imbens & Jeffrey Wooldridge, 2017. "When Should You Adjust Standard Errors for Clustering?," Papers 1710.02926, arXiv.org, revised Oct 2017.
    7. Hansen, Bruce E. & Lee, Seojeong, 2019. "Asymptotic theory for clustered samples," Journal of Econometrics, Elsevier, vol. 210(2), pages 268-290.
    8. Vikström, Johan, 2009. "Cluster sample inference using sensitivity analysis: the case with few groups," Working Paper Series 2009:15, IFAU - Institute for Evaluation of Labour Market and Education Policy.
    9. Antoine A. Djogbenou & James G. MacKinnon & Morten Ø. Nielsen, 2017. "Validity Of Wild Bootstrap Inference With Clustered Errors," Working Paper 1383, Economics Department, Queen's University.
    10. Ivan A. Canay & Andres Santos & Azeem M. Shaikh, 2018. "The wild bootstrap with a "small" number of "large" clusters," CeMMAP working papers CWP27/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    11. Djogbenou, Antoine A. & MacKinnon, James G. & Nielsen, Morten Ørregaard, 2019. "Asymptotic theory and wild bootstrap inference with clustered errors," Journal of Econometrics, Elsevier, vol. 212(2), pages 393-412.
    12. Matthew D. Webb, 2014. "Reworking Wild Bootstrap Based Inference For Clustered Errors," Working Paper 1315, Economics Department, Queen's University.
    13. Jonah B. Gelbach & Doug Miller, 2009. "Robust Inference with Multi-way Clustering," Working Papers 226, University of California, Davis, Department of Economics.
    14. James G. MacKinnon & Morten Ørregaard Nielsen & Matthew D. Webb, 2021. "Cluster-Robust Inference: A Guide to Empirical Practice," Working Paper 1456, Economics Department, Queen's University.
    15. James G. MacKinnon, 2012. "Thirty Years Of Heteroskedasticity-robust Inference," Working Paper 1268, Economics Department, Queen's University.
    16. Rok Spruk, 2019. "The rise and fall of Argentina," Latin American Economic Review, Springer;Centro de Investigaciòn y Docencia Económica (CIDE), vol. 28(1), pages 1-40, December.
    17. Mitchell A. Petersen, 2009. "Estimating Standard Errors in Finance Panel Data Sets: Comparing Approaches," Review of Financial Studies, Society for Financial Studies, vol. 22(1), pages 435-480, January.
    18. Hagemann, Andreas, 2019. "Placebo inference on treatment effects when the number of clusters is small," Journal of Econometrics, Elsevier, vol. 213(1), pages 190-209.
    19. David Roodman & James G. MacKinnon & Morten Ørregaard Nielsen & Matthew D. Webb, 2019. "Fast and wild: Bootstrap inference in Stata using boottest," Stata Journal, StataCorp LP, vol. 19(1), pages 4-60, March.
    20. James G. MacKinnon, 2019. "How cluster‐robust inference is changing applied econometrics," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 52(3), pages 851-881, August.

    More about this item

    JEL classification:

    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tpr:restat:v:90:y:2008:i:3:p:414-427. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://www.mitpressjournals.org/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ann Olson (email available below). General contact details of provider: https://www.mitpressjournals.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.