IDEAS home Printed from https://ideas.repec.org/p/nbr/nberwo/18859.html
   My bibliography  Save this paper

What Are We Weighting For?

Author

Listed:
  • Gary Solon
  • Steven J. Haider
  • Jeffrey Wooldridge

Abstract

The purpose of this paper is to help empirical economists think through when and how to weight the data used in estimation. We start by distinguishing two purposes of estimation: to estimate population descriptive statistics and to estimate causal effects. In the former type of research, weighting is called for when it is needed to make the analysis sample representative of the target population. In the latter type, the weighting issue is more nuanced. We discuss three distinct potential motives for weighting when estimating causal effects: (1) to achieve precise estimates by correcting for heteroskedasticity, (2) to achieve consistent estimates by correcting for endogenous sampling, and (3) to identify average partial effects in the presence of unmodeled heterogeneity of effects. In each case, we find that the motive sometimes does not apply in situations where practitioners often assume it does. We recommend diagnostics for assessing the advisability of weighting, and we suggest methods for appropriate inference.

Suggested Citation

  • Gary Solon & Steven J. Haider & Jeffrey Wooldridge, 2013. "What Are We Weighting For?," NBER Working Papers 18859, National Bureau of Economic Research, Inc.
  • Handle: RePEc:nbr:nberwo:18859
    Note: CH DEV ED HC HE LS PE TWP
    as

    Download full text from publisher

    File URL: http://www.nber.org/papers/w18859.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. O'Connell, Philip J. & Russell, Helen & FitzGerald, John, 2006. "Human Resources," Book Chapters,in: Morgenroth, Edgar (ed.), Ex-Ante Evaluation of the Investment Priorities for the National Development Plan 2007-2013 Economic and Social Research Institute (ESRI).
    2. Steven D. Levitt, 1998. "Juvenile Crime and Punishment," Journal of Political Economy, University of Chicago Press, vol. 106(6), pages 1156-1185, December.
    3. John Fitzgerald & Peter Gottschalk & Robert Moffitt, 1998. "An Analysis of Sample Attrition in Panel Data: The Michigan Panel Study of Income Dynamics," Journal of Human Resources, University of Wisconsin Press, vol. 33(2), pages 251-299.
    4. Jens Ludwig & Douglas L. Miller, 2007. "Does Head Start Improve Children's Life Chances? Evidence from a Regression Discontinuity Design," The Quarterly Journal of Economics, Oxford University Press, vol. 122(1), pages 159-208.
    5. Card, David & Krueger, Alan B, 1992. "Does School Quality Matter? Returns to Education and the Characteristics of Public Schools in the United States," Journal of Political Economy, University of Chicago Press, vol. 100(1), pages 1-40, February.
    6. Elder Todd E & Goddeeris John H & Haider Steven J, 2011. "A Deadly Disparity: A Unified Assessment of the Black-White Infant Mortality Gap," The B.E. Journal of Economic Analysis & Policy, De Gruyter, vol. 11(1), pages 1-44, June.
    7. Stephen G. Donald & Kevin Lang, 2007. "Inference with Difference-in-Differences and Other Panel Data," The Review of Economics and Statistics, MIT Press, vol. 89(2), pages 221-233, May.
    8. Joshua D. Angrist & Jörn-Steffen Pischke, 2009. "Mostly Harmless Econometrics: An Empiricist's Companion," Economics Books, Princeton University Press, edition 1, number 8769.
    9. Leora Friedberg, 1998. "Did Unilateral Divorce Raise Divorce Rates? Evidence from Panel Data," NBER Working Papers 6398, National Bureau of Economic Research, Inc.
    10. White, Halbert, 1980. "A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity," Econometrica, Econometric Society, vol. 48(4), pages 817-838, May.
    11. Justin Wolfers, 2006. "Did Unilateral Divorce Laws Raise Divorce Rates? A Reconciliation and New Results," American Economic Review, American Economic Association, vol. 96(5), pages 1802-1820, December.
    12. Wooldridge, Jeffrey M., 2007. "Inverse probability weighted estimation for general missing data problems," Journal of Econometrics, Elsevier, vol. 141(2), pages 1281-1301, December.
    13. Dickins, William T, 1990. "Error Components in Grouped Data: Is It Ever Worth Weighting?," The Review of Economics and Statistics, MIT Press, vol. 72(2), pages 328-333, May.
    14. Jeffrey M. Wooldridge, 1999. "Asymptotic Properties of Weighted M-Estimators for Variable Probability Samples," Econometrica, Econometric Society, vol. 67(6), pages 1385-1406, November.
    Full references (including those not matched with items on IDEAS)

    More about this item

    JEL classification:

    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nbr:nberwo:18859. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (). General contact details of provider: http://edirc.repec.org/data/nberrus.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.