IDEAS home Printed from https://ideas.repec.org/p/ifs/cemmap/05-04.html
   My bibliography  Save this paper

Inverse probability weighted estimation for general missing data problems

Author

Listed:
  • Jeffrey M. Wooldridge

    () (Institute for Fiscal Studies and MSU)

Abstract

I study inverse probability weighted M-estimation under a general missing data scheme. The cases covered that do not previously appear in the literature include M-estimation with missing data due to a censored survival time, propensity score estimation of the average treatment effect for linear exponential family quasi-log-likelihood functions, and variable probability sampling with observed retainment frequencies. I extend an important result known to hold in special cases: estimating the selection probabilities is generally more efficient than if the known selection probabilities could be used in estimation. For the treatment effect case, the setup allows for a simple characterization of a double robustness result due to Scharfstein, Rotnitzky, and Robins (1999): given appropriate choices for the conditional mean function and quasi-log-likelihood function, only one of the conditional mean or selection probability needs to be correctly specified in order to consistently estimate the average treatment effect.

Suggested Citation

  • Jeffrey M. Wooldridge, 2004. "Inverse probability weighted estimation for general missing data problems," CeMMAP working papers CWP05/04, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
  • Handle: RePEc:ifs:cemmap:05/04
    as

    Download full text from publisher

    File URL: http://cemmap.ifs.org.uk/wps/cwp0504.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Imbens, Guido W, 1992. "An Efficient Method of Moments Estimator for Discrete Choice Models with Choice-Based Sampling," Econometrica, Econometric Society, vol. 60(5), pages 1187-1214, September.
    2. Newey, Whitney K., 1984. "A method of moments interpretation of sequential estimators," Economics Letters, Elsevier, vol. 14(2-3), pages 201-206.
    3. Keisuke Hirano & Guido W. Imbens & Geert Ridder, 2003. "Efficient Estimation of Average Treatment Effects Using the Estimated Propensity Score," Econometrica, Econometric Society, vol. 71(4), pages 1161-1189, July.
    4. Honore, Bo & Khan, Shakeeb & Powell, James L., 2002. "Quantile regression under random censoring," Journal of Econometrics, Elsevier, vol. 109(1), pages 67-105, July.
    5. Murphy, Kevin M & Topel, Robert H, 2002. "Estimation and Inference in Two-Step Econometric Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 88-97, January.
    6. Gourieroux, Christian & Monfort, Alain & Trognon, Alain, 1984. "Pseudo Maximum Likelihood Methods: Theory," Econometrica, Econometric Society, vol. 52(3), pages 681-700, May.
    7. Wooldridge, Jeffrey M., 2001. "Asymptotic Properties Of Weighted M-Estimators For Standard Stratified Samples," Econometric Theory, Cambridge University Press, vol. 17(02), pages 451-470, April.
    8. Newey, Whitney K, 1985. "Maximum Likelihood Specification Testing and Conditional Moment Tests," Econometrica, Econometric Society, vol. 53(5), pages 1047-1070, September.
    9. Jeffrey M. Wooldridge, 2002. "Inverse probability weighted M-estimators for sample selection, attrition and stratification," CeMMAP working papers CWP11/02, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    10. Jeffrey M. Wooldridge, 1999. "Asymptotic Properties of Weighted M-Estimators for Variable Probability Samples," Econometrica, Econometric Society, vol. 67(6), pages 1385-1406, November.
    Full references (including those not matched with items on IDEAS)

    More about this item

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ifs:cemmap:05/04. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Emma Hyman). General contact details of provider: http://edirc.repec.org/data/cmifsuk.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.