IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper

Discrete choice non-response

  • Esmerelda A. Ramalho

    (Institute for Fiscal Studies)

  • Richard Smith

    ()

    (Institute for Fiscal Studies and University of Cambridge)

Missing values are endemic in the data sets available to econometricians. This paper suggests a unified likelihood-based approach to deal with several nonignorable missing data problems for discrete choice models. Our concern is when either the dependent variable is unobserved or situations when both dependent variable and covariates are missing for some sampling units. These cases are also considered when a supplementary random sample of observations on all covariates is available. A unified treatment of these various sampling structures is presented using a formulation of the nonresponse problems as a modification of choice-based sampling. Extensions appropriate for nonresponse are detailed of Imbens' (1992) effcient generalized method of moments (GMM) estimator for choice-based samples. Simulation evidence reveals very promising results for the various GMM estimators proposed in this paper.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://cemmap.ifs.org.uk/wps/cwp0307.pdf
Download Restriction: no

Paper provided by Centre for Microdata Methods and Practice, Institute for Fiscal Studies in its series CeMMAP working papers with number CWP07/03.

as
in new window

Length: 50 pp.
Date of creation: 29 Jul 2003
Date of revision:
Handle: RePEc:ifs:cemmap:07/03
Contact details of provider: Postal:
The Institute for Fiscal Studies 7 Ridgmount Street LONDON WC1E 7AE

Phone: (+44) 020 7291 4800
Fax: (+44) 020 7323 4780
Web page: http://cemmap.ifs.org.uk
Email:


More information through EDIRC

Order Information: Postal: The Institute for Fiscal Studies 7 Ridgmount Street LONDON WC1E 7AE
Email:


References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Keisuke Hirano & Guido W. Imbens & Geert Ridder & Donald B. Rebin, 1998. "Combining Panel Data Sets with Attrition and Refreshment Samples," NBER Technical Working Papers 0230, National Bureau of Economic Research, Inc.
  2. Newey, Whitney K & West, Kenneth D, 1987. "Hypothesis Testing with Efficient Method of Moments Estimation," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 28(3), pages 777-87, October.
  3. Mark B. Stewart, 1982. "On Least Squares Estimation When the Dependent Variable is Grouped," Working Papers 539, Princeton University, Department of Economics, Industrial Relations Section..
  4. Imbens, G. & Lancaster, T., 1991. "Efficient Estimation And Stratified Sampling," Harvard Institute of Economic Research Working Papers 1545, Harvard - Institute of Economic Research.
  5. John Fitzgerald & Peter Gottschalk & Robert Moffitt, 1998. "An Analysis of Sample Attrition in Panel Data: The Michigan Panel Study of income Dynamics," Economics Working Paper Archive 379, The Johns Hopkins University,Department of Economics.
  6. Whitney Newey & Richard Smith, 2003. "Higher order properties of GMM and generalised empirical likelihood estimators," CeMMAP working papers CWP04/03, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
  7. Horowitz, Joel L & Manski, Charles F, 1995. "Identification and Robustness with Contaminated and Corrupted Data," Econometrica, Econometric Society, vol. 63(2), pages 281-302, March.
  8. Guido W. Imbens, 1997. "One-Step Estimators for Over-Identified Generalized Method of Moments Models," Review of Economic Studies, Oxford University Press, vol. 64(3), pages 359-383.
  9. Smith, Richard J, 1997. "Alternative Semi-parametric Likelihood Approaches to Generalised Method of Moments Estimation," Economic Journal, Royal Economic Society, vol. 107(441), pages 503-19, March.
  10. Cosslett, Stephen R, 1981. "Maximum Likelihood Estimator for Choice-Based Samples," Econometrica, Econometric Society, vol. 49(5), pages 1289-1316, September.
  11. Imbens, G.W. & Lancaster, T., 1993. "Case-Control Studies with Contaminated Controls," Discussion Paper 1993-7, Tilburg University, Center for Economic Research.
  12. Imbens, G.W. & Lancaster, T., 1991. "Combining Micro and Macro Data in Microeconometric Models," Harvard Institute of Economic Research Working Papers 1578, Harvard - Institute of Economic Research.
  13. Chris Skinner & Nigel Stuttard & Gabriele Beissel-Durrant & James Jenkins, 2002. "The Measurement of Low Pay in the UK Labour Force Survey," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 64(s1), pages 653-676, 08.
  14. Hausman, J. A. & Abrevaya, Jason & Scott-Morton, F. M., 1998. "Misclassification of the dependent variable in a discrete-response setting," Journal of Econometrics, Elsevier, vol. 87(2), pages 239-269, September.
  15. Judith K. Hellerstein & Guido W. Imbens, 1999. "Imposing Moment Restrictions From Auxiliary Data By Weighting," The Review of Economics and Statistics, MIT Press, vol. 81(1), pages 1-14, February.
  16. Yuichi Kitamura & Michael Stutzer, 1997. "An Information-Theoretic Alternative to Generalized Method of Moments Estimation," Econometrica, Econometric Society, vol. 65(4), pages 861-874, July.
  17. Imbens, G.W., 1990. "An Efficient Method of Moments Estimator for Discrete Choice Models with Choice-Based Sampling," Discussion Paper 1990-9, Tilburg University, Center for Economic Research.
  18. Horowitz, J.L. & Manski, C.F., 1995. "Censoring of Outcomes and Regressors Due to Survey Nonresponse: Identification and estimation Using Weights and Imputations," Working Papers 95-12, University of Iowa, Department of Economics.
  19. Ramalho, Esmeralda A., 2007. "Binary models with misclassification in the variable of interest and nonignorable nonresponse," Economics Letters, Elsevier, vol. 96(1), pages 70-76, July.
  20. Guido W. Imbens, 2003. "Nonparametric Estimation of Average Treatment Effects under Exogeneity: A Review," NBER Technical Working Papers 0294, National Bureau of Economic Research, Inc.
  21. Manski, Charles F & Lerman, Steven R, 1977. "The Estimation of Choice Probabilities from Choice Based Samples," Econometrica, Econometric Society, vol. 45(8), pages 1977-88, November.
  22. Molinari, Francesca, 2010. "Missing Treatments," Journal of Business & Economic Statistics, American Statistical Association, vol. 28(1), pages 82-95.
  23. Jeffrey M. Wooldridge, 1999. "Asymptotic Properties of Weighted M-Estimators for Variable Probability Samples," Econometrica, Econometric Society, vol. 67(6), pages 1385-1406, November.
  24. Wooldridge, Jeffrey M., 2001. "Asymptotic Properties Of Weighted M-Estimators For Standard Stratified Samples," Econometric Theory, Cambridge University Press, vol. 17(02), pages 451-470, April.
  25. James J. Heckman, 1976. "The Common Structure of Statistical Models of Truncation, Sample Selection and Limited Dependent Variables and a Simple Estimator for Such Models," NBER Chapters, in: Annals of Economic and Social Measurement, Volume 5, number 4, pages 475-492 National Bureau of Economic Research, Inc.
  26. J. F. Lawless & J. D. Kalbfleisch & C. J. Wild, 1999. "Semiparametric methods for response-selective and missing data problems in regression," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(2), pages 413-438.
  27. Ramalho, Esmeralda A., 2002. "Regression models for choice-based samples with misclassification in the response variable," Journal of Econometrics, Elsevier, vol. 106(1), pages 171-201, January.
  28. Gong Tang, 2003. "Analysis of multivariate missing data with nonignorable nonresponse," Biometrika, Biometrika Trust, vol. 90(4), pages 747-764, December.
  29. Newey, Whitney K. & McFadden, Daniel, 1986. "Large sample estimation and hypothesis testing," Handbook of Econometrics, in: R. F. Engle & D. McFadden (ed.), Handbook of Econometrics, edition 1, volume 4, chapter 36, pages 2111-2245 Elsevier.
  30. Esmeralda Ramalho, 2004. "Covariate Measurement Error in Endogenous Stratified Samples," Economics Working Papers 2_2004, University of Évora, Department of Economics (Portugal).
  31. Skinner, Chris, et al, 2002. " The Measurement of Low Pay in the UK Labour Force Survey," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 64(0), pages 653-76, Supplemen.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:ifs:cemmap:07/03. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Emma Hyman)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.