IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

Binary models with misclassification in the variable of interest

Listed author(s):
  • Esmeralda Ramalho


    (Department of Economics, University of Évora)

In this paper we propose a general framework to deal with datasets where a binary outcome is subject to misclassification and, for some sampling units, neither the error-prone variable of interest nor the covariates are recorded. A model to describe the observed data is for-malized and eficient likelihood-based generalized method of moments (GMM) estimators are suggested. These estimators merely require the formulation of the conditional distribution of the latent outcome given the covariates. The conditional probabilities which describe the error and the nonresponse mechanisms are estimated simultaneously with the parameters of inter-est. In a small Monte Carlo simulation study our GMM estimators revealed a very promising performance.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: no

Paper provided by University of Évora, Department of Economics (Portugal) in its series Economics Working Papers with number 3_2004.

in new window

Length: 20 pages
Date of creation: 2004
Handle: RePEc:evo:wpecon:3_2004
Contact details of provider: Postal:
Largo dos Colegiais 2, 7000 - 803ÉVORA

Phone: + 351 266 74 08 94
Fax: + 351 266 74 24 94
Web page:

More information through EDIRC

No references listed on IDEAS
You can help add them by filling out this form.

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:evo:wpecon:3_2004. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Maria Aurora Murcho Galego)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.