IDEAS home Printed from https://ideas.repec.org/a/eee/econom/v144y2008i1p81-117.html
   My bibliography  Save this article

Partial identification of probability distributions with misclassified data

Author

Listed:
  • Molinari, Francesca

Abstract

This paper addresses the problem of data errors in discrete variables. When data errors occur, the observed variable is a misclassified version of the variable of interest, whose distribution is not identified. Inferential problems caused by data errors have been conceptualized through convolution and mixture models. This paper introduces the direct misclassification approach. The approach is based on the observation that in the presence of classification errors, the relation between the distribution of the 'true' but unobservable variable and its misclassified representation is given by a linear system of simultaneous equations, in which the coefficient matrix is the matrix of misclassification probabilities. Formalizing the problem in these terms allows one to incorporate any prior information into the analysis through sets of restrictions on the matrix of misclassification probabilities. Such information can have strong identifying power. The direct misclassification approach fully exploits it to derive identification regions for any real functional of the distribution of interest. A method for estimating the identification regions and construct their confidence sets is given, and illustrated with an empirical analysis of the distribution of pension plan types using data from the Health and Retirement Study.

Suggested Citation

  • Molinari, Francesca, 2008. "Partial identification of probability distributions with misclassified data," Journal of Econometrics, Elsevier, vol. 144(1), pages 81-117, May.
  • Handle: RePEc:eee:econom:v:144:y:2008:i:1:p:81-117
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304-4076(07)00256-4
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Aigner, Dennis J., 1973. "Regression with a binary independent variable subject to errors of observation," Journal of Econometrics, Elsevier, vol. 1(1), pages 49-59, March.
    2. Bo E. Honoré & Adriana Lleras-Muney, 2006. "Bounds in Competing Risks Models and the War on Cancer," Econometrica, Econometric Society, vol. 74(6), pages 1675-1698, November.
    3. Federico Ciliberto & Elie Tamer, 2009. "Market Structure and Multiple Equilibria in Airline Markets," Econometrica, Econometric Society, vol. 77(6), pages 1791-1828, November.
    4. Charles F. Manski & Elie Tamer, 2002. "Inference on Regressions with Interval Data on a Regressor or Outcome," Econometrica, Econometric Society, vol. 70(2), pages 519-546, March.
    5. Richard Blundell & Amanda Gosling & Hidehiko Ichimura & Costas Meghir, 2007. "Changes in the Distribution of Male and Female Wages Accounting for Employment Composition Using Bounds," Econometrica, Econometric Society, vol. 75(2), pages 323-363, March.
    6. Guido W. Imbens & Charles F. Manski, 2004. "Confidence Intervals for Partially Identified Parameters," Econometrica, Econometric Society, vol. 72(6), pages 1845-1857, November.
    7. Bo E. Honoré & Elie Tamer, 2006. "Bounds on Parameters in Panel Dynamic Discrete Choice Models," Econometrica, Econometric Society, vol. 74(3), pages 611-629, May.
    8. Bound, John & Brown, Charles & Mathiowetz, Nancy, 2001. "Measurement error in survey data," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 5, chapter 59, pages 3705-3843, Elsevier.
    9. E. Tamer & V. Chernozhukov & H. Hong, 2004. "Parameter Set Inference in a Class of Econometric Models," Econometric Society 2004 North American Winter Meetings 382, Econometric Society.
    10. Horowitz, Joel L & Manski, Charles F, 1995. "Identification and Robustness with Contaminated and Corrupted Data," Econometrica, Econometric Society, vol. 63(2), pages 281-302, March.
    11. Thomas J. Kane & Cecilia Elena Rouse & Douglas Staiger, 1999. "Estimating Returns to Schooling When Schooling is Misreported," NBER Working Papers 7235, National Bureau of Economic Research, Inc.
    12. Horowitz, Joel L. & Manski, Charles F., 1998. "Censoring of outcomes and regressors due to survey nonresponse: Identification and estimation using weights and imputations," Journal of Econometrics, Elsevier, vol. 84(1), pages 37-58, May.
    13. Brent Kreider & John Pepper, 2008. "Inferring disability status from corrupt data," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 23(3), pages 329-349.
    14. Klepper, Steven & Leamer, Edward E, 1984. "Consistent Sets of Estimates for Regressions with Errors in All Variables," Econometrica, Econometric Society, vol. 52(1), pages 163-183, January.
    15. Hu, Yingyao, 2006. "Bounding parameters in a linear regression model with a mismeasured regressor using additional information," Journal of Econometrics, Elsevier, vol. 133(1), pages 51-70, July.
    16. Victor Chernozhukov & Han Hong & Elie Tamer, 2007. "Estimation and Confidence Regions for Parameter Sets in Econometric Models," Econometrica, Econometric Society, vol. 75(5), pages 1243-1284, September.
    17. Arie Beresteanu & Francesca Molinari, 2008. "Asymptotic Properties for a Class of Partially Identified Models," Econometrica, Econometric Society, vol. 76(4), pages 763-814, July.
    18. Bollinger, Christopher R., 1996. "Bounding mean regressions when a binary regressor is mismeasured," Journal of Econometrics, Elsevier, vol. 73(2), pages 387-399, August.
    19. Dustmann, C. & van Soest, A.H.O., 1999. "Parametric and Semiparametric Estimation in Models with Misclassified Categorical Dependent Variables," Discussion Paper 1999-51, Tilburg University, Center for Economic Research.
    20. Lewbel, Arthur, 2000. "Identification Of The Binary Choice Model With Misclassification," Econometric Theory, Cambridge University Press, vol. 16(4), pages 603-609, August.
    21. Hausman, J. A. & Abrevaya, Jason & Scott-Morton, F. M., 1998. "Misclassification of the dependent variable in a discrete-response setting," Journal of Econometrics, Elsevier, vol. 87(2), pages 239-269, September.
    22. Mellow, Wesley & Sider, Hal, 1983. "Accuracy of Response in Labor Market Surveys: Evidence and Implications," Journal of Labor Economics, University of Chicago Press, vol. 1(4), pages 331-344, October.
    23. repec:adr:anecst:y:1999:i:55-56:p:09 is not listed on IDEAS
    24. Ramalho, Esmeralda A., 2002. "Regression models for choice-based samples with misclassification in the response variable," Journal of Econometrics, Elsevier, vol. 106(1), pages 171-201, January.
    25. AIGNER, Dennis J., 1973. "Regression with a binary independent variable subject to errors of observation," LIDAM Reprints CORE 130, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    26. Card, David, 1996. "The Effect of Unions on the Structure of Wages: A Longitudinal Analysis," Econometrica, Econometric Society, vol. 64(4), pages 957-979, July.
    27. Aprajit Mahajan, 2006. "Identification and Estimation of Regression Models with Misclassification," Econometrica, Econometric Society, vol. 74(3), pages 631-665, May.
    28. V. Joseph Hotz & Charles H. Mullin & Seth G. Sanders, 1997. "Bounding Causal Effects Using Data from a Contaminated Natural Experiment: Analysing the Effects of Teenage Childbearing," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 64(4), pages 575-603.
    29. Thomas J. Kane & Cecilia Rouse & Douglas Staiger, 1999. "Estimating Returns to Schooling When Schooling is Misreported," Working Papers 798, Princeton University, Department of Economics, Industrial Relations Section..
    30. Alan L. Gustman & Olivia S. Mitchell & Andrew A. Samwick & Thomas L. Steinmeier, "undated". "Evaluating Pension Entitlements," Pension Research Council Working Papers 98-20, Wharton School Pension Research Council, University of Pennsylvania.
    31. Poterba, James M & Summers, Lawrence H, 1995. "Unemployment Benefits and Labor Market Transitions: A Multinomial Logit Model with Errors in Classification," The Review of Economics and Statistics, MIT Press, vol. 77(2), pages 207-216, May.
    32. Robert P. Sherman & Jeff Dominitz, 2006. "Identification and estimation of bounds on school performance measures: a nonparametric analysis of a mixture model with verification," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(8), pages 1295-1326.
    33. Jason Abrevaya & Jerry A. Hausman, 1999. "Semiparametric Estimation with Mismeasured Dependent Variables: An Application to Duration Models for Unemployment Spells," Annals of Economics and Statistics, GENES, issue 55-56, pages 243-275.
    34. Klepper, Steven, 1988. "Bounding the effects of measurement error in regressions involving dichotomous variables," Journal of Econometrics, Elsevier, vol. 37(3), pages 343-359, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Francesca Molinari, 2020. "Microeconometrics with Partial Identi?cation," CeMMAP working papers CWP15/20, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    2. Arthur Lewbel, 2007. "Estimation of Average Treatment Effects with Misclassification," Econometrica, Econometric Society, vol. 75(2), pages 537-551, March.
    3. Winter, Joachim, 0000. "Bracketing effects in categorized survey questions and the measurement of economic quantities," Sonderforschungsbereich 504 Publications 02-35, Sonderforschungsbereich 504, Universität Mannheim;Sonderforschungsbereich 504, University of Mannheim.
    4. Magnac, Thierry, 2013. "Identification partielle : méthodes et conséquences pour les applications empiriques," L'Actualité Economique, Société Canadienne de Science Economique, vol. 89(4), pages 233-258, Décembre.
    5. Aprajit Mahajan, 2006. "Identification and Estimation of Regression Models with Misclassification," Econometrica, Econometric Society, vol. 74(3), pages 631-665, May.
    6. Francesca Molinari, 2019. "Econometrics with Partial Identification," CeMMAP working papers CWP25/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    7. Christian Bontemps & Thierry Magnac & Eric Maurin, 2012. "Set Identified Linear Models," Econometrica, Econometric Society, vol. 80(3), pages 1129-1155, May.
    8. Kate Ho & Adam M. Rosen, 2015. "Partial Identification in Applied Research: Benefits and Challenges," NBER Working Papers 21641, National Bureau of Economic Research, Inc.
    9. Rosen, Adam M., 2008. "Confidence sets for partially identified parameters that satisfy a finite number of moment inequalities," Journal of Econometrics, Elsevier, vol. 146(1), pages 107-117, September.
    10. Takahide Yanagi, 2019. "Inference on local average treatment effects for misclassified treatment," Econometric Reviews, Taylor & Francis Journals, vol. 38(8), pages 938-960, September.
    11. Brachet, Tanguy, 2008. "Maternal Smoking, Misclassification, and Infant Health," MPRA Paper 21466, University Library of Munich, Germany.
    12. Steven J. Haider & Melvin Stephens Jr., 2020. "Correcting for Misclassified Binary Regressors Using Instrumental Variables," NBER Working Papers 27797, National Bureau of Economic Research, Inc.
    13. Tommasi, Denni & Zhang, Lina, 2024. "Bounding program benefits when participation is misreported," Journal of Econometrics, Elsevier, vol. 238(1).
    14. Adele Bergin, 2015. "Employer Changes and Wage Changes: Estimation with Measurement Error in a Binary Variable," LABOUR, CEIS, vol. 29(2), pages 194-223, June.
    15. Christopher R. Bollinger, 2001. "Response Error and the Union Wage Differential," Southern Economic Journal, John Wiley & Sons, vol. 68(1), pages 60-76, July.
    16. Battistin, Erich & De Nadai, Michele & Vuri, Daniela, 2017. "Counting rotten apples: Student achievement and score manipulation in Italian elementary Schools," Journal of Econometrics, Elsevier, vol. 200(2), pages 344-362.
    17. Erich Battistin & Barbara Sianesi, 2006. "Misreported schooling and returns to education: evidence from the UK," CeMMAP working papers CWP07/06, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    18. Adele Bergin, 2013. "Job Changes and Wage Changes: Estimation with Measurement Error in a Binary Variable," Economics Department Working Paper Series n240-13.pdf, Department of Economics, National University of Ireland - Maynooth.
    19. Kreider, Brent & Pepper, John V., 2011. "Identification of Expected Outcomes in a Data Error Mixing Model With Multiplicative Mean Independence," Journal of Business & Economic Statistics, American Statistical Association, vol. 29(1), pages 49-60.
    20. Akanksha Negi & Digvijay Singh Negi, 2022. "Difference-in-Differences with a Misclassified Treatment," Papers 2208.02412, arXiv.org.

    More about this item

    JEL classification:

    • C10 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - General
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • J26 - Labor and Demographic Economics - - Demand and Supply of Labor - - - Retirement; Retirement Policies

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:144:y:2008:i:1:p:81-117. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jeconom .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.