IDEAS home Printed from https://ideas.repec.org/a/ecm/emetrp/v74y2006i3p631-665.html
   My bibliography  Save this article

Identification and Estimation of Regression Models with Misclassification

Author

Listed:
  • Aprajit Mahajan

Abstract

This paper studies the problem of identification and estimation in nonparametric regression models with a misclassified binary regressor where the measurement error may be correlated with the regressors. We show that the regression function is nonparametrically identified in the presence of an additional random variable that is correlated with the unobserved true underlying variable but unrelated to the measurement error. Identification for semiparametric and parametric regression functions follows straightforwardly from the basic identification result. We propose a kernel estimator based on the identification strategy, derive its large sample properties, and discuss alternative estimation procedures. We also propose a test for misclassification in the model based on an exclusion restriction that is straightforward to implement. Copyright The Econometric Society 2006.

Suggested Citation

  • Aprajit Mahajan, 2006. "Identification and Estimation of Regression Models with Misclassification," Econometrica, Econometric Society, vol. 74(3), pages 631-665, May.
  • Handle: RePEc:ecm:emetrp:v:74:y:2006:i:3:p:631-665
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/j.1468-0262.2006.00677.x
    File Function: link to full text
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bollinger, Christopher R, 1998. "Measurement Error in the Current Population Survey: A Nonparametric Look," Journal of Labor Economics, University of Chicago Press, vol. 16(3), pages 576-594, July.
    2. Aigner, Dennis J., 1973. "Regression with a binary independent variable subject to errors of observation," Journal of Econometrics, Elsevier, vol. 1(1), pages 49-59, March.
    3. Jonathan Zinman, 2004. "Why use debit instead of credit? Consumer choice in a trillion-dollar market," Staff Reports 191, Federal Reserve Bank of New York.
    4. Mellow, Wesley & Sider, Hal, 1983. "Accuracy of Response in Labor Market Surveys: Evidence and Implications," Journal of Labor Economics, University of Chicago Press, vol. 1(4), pages 331-344, October.
    5. Thomas J. Kane & Cecilia E. Rouse & Douglas Staiger, 1999. "Estimating Returns to Schooling When Schooling is Misreported," Working Papers 798, Princeton University, Department of Economics, Industrial Relations Section..
    6. Newey, Whitney K, 1994. "The Asymptotic Variance of Semiparametric Estimators," Econometrica, Econometric Society, vol. 62(6), pages 1349-1382, November.
    7. Susanne M. Schennach, 2004. "Estimation of Nonlinear Models with Measurement Error," Econometrica, Econometric Society, vol. 72(1), pages 33-75, January.
    8. Lewbel, Arthur, 2000. "Identification Of The Binary Choice Model With Misclassification," Econometric Theory, Cambridge University Press, vol. 16(4), pages 603-609, August.
    9. Bound, John & Krueger, Alan B, 1991. "The Extent of Measurement Error in Longitudinal Earnings Data: Do Two Wrongs Make a Right?," Journal of Labor Economics, University of Chicago Press, vol. 9(1), pages 1-24, January.
    10. Powell, James L & Stock, James H & Stoker, Thomas M, 1989. "Semiparametric Estimation of Index Coefficients," Econometrica, Econometric Society, vol. 57(6), pages 1403-1430, November.
    11. repec:adr:anecst:y:1999:i:55-56:p:09 is not listed on IDEAS
    12. Hyslop, Dean R & Imbens, Guido W, 2001. "Bias from Classical and Other Forms of Measurement Error," Journal of Business & Economic Statistics, American Statistical Association, vol. 19(4), pages 475-481, October.
    13. AIGNER, Dennis J., 1973. "Regression with a binary independent variable subject to errors of observation," LIDAM Reprints CORE 130, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    14. Newey, Whitney K & Stoker, Thomas M, 1993. "Efficiency of Weighted Average Derivative Estimators and Index Models," Econometrica, Econometric Society, vol. 61(5), pages 1199-1223, September.
    15. Card, David, 1996. "The Effect of Unions on the Structure of Wages: A Longitudinal Analysis," Econometrica, Econometric Society, vol. 64(4), pages 957-979, July.
    16. Thomas J. Kane & Cecilia Rouse & Douglas Staiger, 1999. "Estimating Returns to Schooling When Schooling is Misreported," Working Papers 798, Princeton University, Department of Economics, Industrial Relations Section..
    17. Susanne M Schennach, 2007. "Instrumental Variable Estimation of Nonlinear Errors-in-Variables Models," Econometrica, Econometric Society, vol. 75(1), pages 201-239, January.
    18. Bollinger, Christopher R., 1996. "Bounding mean regressions when a binary regressor is mismeasured," Journal of Econometrics, Elsevier, vol. 73(2), pages 387-399, August.
    19. Jason Abrevaya & Jerry A. Hausman, 1999. "Semiparametric Estimation with Mismeasured Dependent Variables: An Application to Duration Models for Unemployment Spells," Annals of Economics and Statistics, GENES, issue 55-56, pages 243-275.
    20. Hausman, Jerry A. & Newey, Whitney K. & Ichimura, Hidehiko & Powell, James L., 1991. "Identification and estimation of polynomial errors-in-variables models," Journal of Econometrics, Elsevier, vol. 50(3), pages 273-295, December.
    21. Hausman, J. A. & Abrevaya, Jason & Scott-Morton, F. M., 1998. "Misclassification of the dependent variable in a discrete-response setting," Journal of Econometrics, Elsevier, vol. 87(2), pages 239-269, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Molinari, Francesca, 2008. "Partial identification of probability distributions with misclassified data," Journal of Econometrics, Elsevier, vol. 144(1), pages 81-117, May.
    2. Arthur Lewbel, 2007. "Estimation of Average Treatment Effects with Misclassification," Econometrica, Econometric Society, vol. 75(2), pages 537-551, March.
    3. Takahide Yanagi, 2019. "Inference on local average treatment effects for misclassified treatment," Econometric Reviews, Taylor & Francis Journals, vol. 38(8), pages 938-960, September.
    4. Francis DiTraglia & Camilo Garcia-Jimeno, 2015. "On Mis-measured Binary Regressors: New Results And Some Comments on the Literature, Third Version," PIER Working Paper Archive 15-040, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania, revised 24 Nov 2015.
    5. Adele Bergin, 2015. "Employer Changes and Wage Changes: Estimation with Measurement Error in a Binary Variable," LABOUR, CEIS, vol. 29(2), pages 194-223, June.
    6. Christopher R. Bollinger, 2001. "Response Error and the Union Wage Differential," Southern Economic Journal, John Wiley & Sons, vol. 68(1), pages 60-76, July.
    7. Wossen, Tesfamicheal & Abay, Kibrom A. & Abdoulaye, Tahirou, 2022. "Misperceiving and misreporting input quality: Implications for input use and productivity," Journal of Development Economics, Elsevier, vol. 157(C).
    8. Yingyao Hu & Geert Ridder, 2012. "Estimation of nonlinear models with mismeasured regressors using marginal information," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(3), pages 347-385, April.
    9. Hu, Yingyao, 2008. "Identification and estimation of nonlinear models with misclassification error using instrumental variables: A general solution," Journal of Econometrics, Elsevier, vol. 144(1), pages 27-61, May.
    10. Song, Suyong, 2015. "Semiparametric estimation of models with conditional moment restrictions in the presence of nonclassical measurement errors," Journal of Econometrics, Elsevier, vol. 185(1), pages 95-109.
    11. Francis DiTraglia & Camilo Garcia-Jimeno, 2015. "On Mis-measured Binary Regressors: New Results And Some Comments on the Literature, Second Version," PIER Working Paper Archive 15-039, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania, revised 11 Nov 2015.
    12. Brachet, Tanguy, 2008. "Maternal Smoking, Misclassification, and Infant Health," MPRA Paper 21466, University Library of Munich, Germany.
    13. Tommasi, Denni & Zhang, Lina, 2024. "Bounding program benefits when participation is misreported," Journal of Econometrics, Elsevier, vol. 238(1).
    14. Nguimkeu, Pierre & Denteh, Augustine & Tchernis, Rusty, 2019. "On the estimation of treatment effects with endogenous misreporting," Journal of Econometrics, Elsevier, vol. 208(2), pages 487-506.
    15. Kyung Min Kang & Robert A. Moffitt, 2019. "The Effect of SNAP and School Food Programs on Food Security, Diet Quality, and Food Spending: Sensitivity to Program Reporting Error," Southern Economic Journal, John Wiley & Sons, vol. 86(1), pages 156-201, July.
    16. Francis J. DiTraglia & Camilo García-Jimeno, 2017. "Mis-classified, Binary, Endogenous Regressors: Identification and Inference," NBER Working Papers 23814, National Bureau of Economic Research, Inc.
    17. Zhang, Han, 2021. "How Using Machine Learning Classification as a Variable in Regression Leads to Attenuation Bias and What to Do About It," SocArXiv 453jk, Center for Open Science.
    18. Frazis, Harley & Loewenstein, Mark A., 2003. "Estimating linear regressions with mismeasured, possibly endogenous, binary explanatory variables," Journal of Econometrics, Elsevier, vol. 117(1), pages 151-178, November.
    19. Daniel Wilhelm, 2018. "Testing for the presence of measurement error," CeMMAP working papers CWP45/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    20. Jeremy J. Nalewaik, 2014. "Missing Variation in the Great Moderation: Lack of Signal Error and OLS Regression," Finance and Economics Discussion Series 2014-27, Board of Governors of the Federal Reserve System (U.S.).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ecm:emetrp:v:74:y:2006:i:3:p:631-665. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/essssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.