IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

Censoring of outcomes and regressors due to survey nonresponse: Identification and estimation using weights and imputations

  • Horowitz, Joel L.
  • Manski, Charles F.

Survey nonresponse makes identification of population statistics problematic. Except in special cases, identification is possible only if one makes untestable assumptions about the distribution of the missing data. However, non-response does not preclude identification of bounds on population statistics. This paper shows how identified bounds on unidentified population statistics can be obtained under several forms of nonresponse. Organizations conducting major surveys commonly release public-use data files that provide nonresponse weights or imputations to be used for estimating population statistics. The paper shows how to bound the asymptotic bias of estimates using weights and imputations. The results are illustrated with empirical examples based on the National Longitudinal Survey of Youth.

(This abstract was borrowed from another version of this item.)

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.sciencedirect.com/science/article/B6VC0-3SX6N67-K/2/d80d83328189c50a13cfc9068878e991
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Elsevier in its journal Journal of Econometrics.

Volume (Year): 84 (1998)
Issue (Month): 1 (May)
Pages: 37-58

as
in new window

Handle: RePEc:eee:econom:v:84:y:1998:i:1:p:37-58
Contact details of provider: Web page: http://www.elsevier.com/locate/jeconom

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. repec:att:wimass:9217 is not listed on IDEAS
  2. Manski, C.F., 1990. "The Selection Problem," Working papers 90-12, Wisconsin Madison - Social Systems.
  3. Horowitz, Joel L & Manski, Charles F, 1995. "Identification and Robustness with Contaminated and Corrupted Data," Econometrica, Econometric Society, vol. 63(2), pages 281-302, March.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:84:y:1998:i:1:p:37-58. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.