IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this book chapter or follow this series

Measurement error in survey data

In: Handbook of Econometrics

  • Bound, John
  • Brown, Charles
  • Mathiowetz, Nancy

Economists have devoted increasing attention to the magnitude and consequences of measurement error in their data. Most discussions of measurement error are based on the "classical[equal, rising dots] assumption that errors in measuring a particular variable are uncorrelated with the true value of that variable, the true values of other variables in the model, and any errors in measuring those variables. In this survey, we focus on both the importance of measurement error in standard survey-based economic variables and on the validity of the classical assumption.We begin by summarizing the literature on biases due to measurement error, contrasting the classical assumption and the more general case. We then argue that, while standard methods will not eliminate the bias when measurement errors are not classical, one can often use them to obtain bounds on this bias. Validation studies allow us to assess the magnitude of measurement errors in survey data, and the validity of the classical assumption. In principle, they provide an alternative strategy for reducing or eliminating the bias due to measurement error.We then turn to the work of social psychologists and survey methodologists which identifies the conditions under which measurement error is likely to be important. While there are some important general findings on errors in measuring recall of discrete events, there is less direct guidance on continuous variables such as hourly wages or annual earnings.Finally, we attempt to summarize the validation literature on specific variables: annual earnings, hourly wages, transfer income, assets, hours worked, unemployment, job characteristics like industry, occupation, and union status, health status, health expenditures, and education. In addition to the magnitude of the errors, we also focus on the validity of the classical assumption. Quite often, we find evidence that errors are negatively correlated with true values.The usefulness of validation data in telling us about errors in survey measures can be enhanced if validation data is collected for a random portion of major surveys (rather than, as is usually the case, for a separate convenience sample for which validation data could be obtained relatively easily); if users are more actively involved in the design of validation studies; and if micro data from validation studies can be shared with researchers not involved in the original data collection.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.sciencedirect.com/science/article/B7GX7-4DXJCWR-1M/2/90c6de4bee614acfb9b03e96ed021274
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

as
in new window

This chapter was published in:
  • J.J. Heckman & E.E. Leamer (ed.), 2001. "Handbook of Econometrics," Handbook of Econometrics, Elsevier, edition 1, volume 5, number 5, January.
  • This item is provided by Elsevier in its series Handbook of Econometrics with number 5-59.
    Handle: RePEc:eee:ecochp:5-59
    Contact details of provider: Web page: http://www.elsevier.com/wps/find/bookseriesdescription.cws_home/BS_HE/description

    No references listed on IDEAS
    You can help add them by filling out this form.

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:eee:ecochp:5-59. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.