IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1810.00411.html

Nonparametric Regression with Selectively Missing Covariates

Author

Listed:
  • Christoph Breunig
  • Peter Haan

Abstract

We consider the problem of regression with selectively observed covariates in a nonparametric framework. Our approach relies on instrumental variables that explain variation in the latent covariates but have no direct effect on selection. The regression function of interest is shown to be a weighted version of observed conditional expectation where the weighting function is a fraction of selection probabilities. Nonparametric identification of the fractional probability weight (FPW) function is achieved via a partial completeness assumption. We provide primitive functional form assumptions for partial completeness to hold. The identification result is constructive for the FPW series estimator. We derive the rate of convergence and also the pointwise asymptotic distribution. In both cases, the asymptotic performance of the FPW series estimator does not suffer from the inverse problem which derives from the nonparametric instrumental variable approach. In a Monte Carlo study, we analyze the finite sample properties of our estimator and we compare our approach to inverse probability weighting, which can be used alternatively for unconditional moment estimation. In the empirical application, we focus on two different applications. We estimate the association between income and health using linked data from the SHARE survey and administrative pension information and use pension entitlements as an instrument. In the second application we revisit the question how income affects the demand for housing based on data from the German Socio-Economic Panel Study (SOEP). In this application we use regional income information on the residential block level as an instrument. In both applications we show that income is selectively missing and we demonstrate that standard methods that do not account for the nonrandom selection process lead to significantly biased estimates for individuals with low income.

Suggested Citation

  • Christoph Breunig & Peter Haan, 2018. "Nonparametric Regression with Selectively Missing Covariates," Papers 1810.00411, arXiv.org, revised Oct 2020.
  • Handle: RePEc:arx:papers:1810.00411
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1810.00411
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Richard M Dodds & Holly E Syddall & Rachel Cooper & Michaela Benzeval & Ian J Deary & Elaine M Dennison & Geoff Der & Catharine R Gale & Hazel M Inskip & Carol Jagger & Thomas B Kirkwood & Debbie A La, 2014. "Grip Strength across the Life Course: Normative Data from Twelve British Studies," PLOS ONE, Public Library of Science, vol. 9(12), pages 1-15, December.
    2. Ivan A. Canay & Andres Santos & Azeem M. Shaikh, 2013. "On the Testability of Identification in Some Nonparametric Models With Endogeneity," Econometrica, Econometric Society, vol. 81(6), pages 2535-2559, November.
    3. Breunig, Christoph & Mammen, Enno & Simoni, Anna, 2018. "Nonparametric estimation in case of endogenous selection," Journal of Econometrics, Elsevier, vol. 202(2), pages 268-285.
    4. Esmeralda A. Ramalho & Richard J. Smith, 2013. "Discrete Choice Non-Response," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 80(1), pages 343-364.
    5. Amélie Adeline & Eric Delattre, 2017. "Some microeconometric evidence on the relationship between health and income," Health Economics Review, Springer, vol. 7(1), pages 1-18, December.
    6. Xiaohong Chen & Oliver Linton & Ingrid Van Keilegom, 2003. "Estimation of Semiparametric Models when the Criterion Function Is Not Smooth," Econometrica, Econometric Society, vol. 71(5), pages 1591-1608, September.
    7. Paul Bingley & Alessandro Martinello, 2017. "Measurement Error in Income and Schooling and the Bias of Linear Estimators," Journal of Labor Economics, University of Chicago Press, vol. 35(4), pages 1117-1148.
    8. repec:hum:wpaper:sfb649dp2017-007 is not listed on IDEAS
    9. Gong Tang, 2003. "Analysis of multivariate missing data with nonignorable nonresponse," Biometrika, Biometrika Trust, vol. 90(4), pages 747-764, December.
    10. Belloni, Alexandre & Chernozhukov, Victor & Chetverikov, Denis & Kato, Kengo, 2015. "Some new asymptotic theory for least squares series: Pointwise and uniform results," Journal of Econometrics, Elsevier, vol. 186(2), pages 345-366.
    11. Richard Blundell & Xiaohong Chen & Dennis Kristensen, 2007. "Semi-Nonparametric IV Estimation of Shape-Invariant Engel Curves," Econometrica, Econometric Society, vol. 75(6), pages 1613-1669, November.
    12. David Cutler & Angus Deaton & Adriana Lleras-Muney, 2006. "The Determinants of Mortality," Journal of Economic Perspectives, American Economic Association, vol. 20(3), pages 97-120, Summer.
    13. Jiwei Zhao & Jun Shao, 2015. "Semiparametric Pseudo-Likelihoods in Generalized Linear Models With Nonignorable Missing Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(512), pages 1577-1590, December.
    14. Breunig, Christoph, 2017. "Testing Missing At Random Using Instrumental Variables," Rationality and Competition Discussion Paper Series 59, CRC TRR 190 Rationality and Competition.
    15. Deaton, Angus S & Paxson, Christina H, 1998. "Aging and Inequality in Income and Health," American Economic Review, American Economic Association, vol. 88(2), pages 248-253, May.
    16. repec:hum:wpaper:sfb649dp2015-050 is not listed on IDEAS
    17. Chen, Xiaohong & Christensen, Timothy M., 2015. "Optimal uniform convergence rates and asymptotic normality for series estimators under weak dependence and weak conditions," Journal of Econometrics, Elsevier, vol. 188(2), pages 447-465.
    18. Chen, Xiaohong, 2007. "Large Sample Sieve Estimation of Semi-Nonparametric Models," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 76, Elsevier.
    19. Newey, Whitney K., 1997. "Convergence rates and asymptotic normality for series estimators," Journal of Econometrics, Elsevier, vol. 79(1), pages 147-168, July.
    20. Hannes Schwandt, 2018. "Wealth Shocks and Health Outcomes: Evidence from Stock Market Fluctuations," American Economic Journal: Applied Economics, American Economic Association, vol. 10(4), pages 349-377, October.
    21. Yingyao Hu & Susanne M. Schennach, 2008. "Instrumental Variable Treatment of Nonclassical Measurement Error Models," Econometrica, Econometric Society, vol. 76(1), pages 195-216, January.
    22. Xiaohong Chen & Timothy M. Christensen, 2018. "Optimal sup‐norm rates and uniform inference on nonlinear functionals of nonparametric IV regression," Quantitative Economics, Econometric Society, vol. 9(1), pages 39-84, March.
    23. D. Zeng & D. Y. Lin, 2007. "Maximum likelihood estimation in semiparametric regression models with censored data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(4), pages 507-564, September.
    24. Chen, Qingxia & Zeng, Donglin & Ibrahim, Joseph G., 2007. "Sieve Maximum Likelihood Estimation for Regression Models With Covariates Missing at Random," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 1309-1317, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Breunig, Christoph & Haan, Peter, 2021. "Nonparametric regression with selectively missing covariates," Journal of Econometrics, Elsevier, vol. 223(1), pages 28-52.
    2. Breunig, Christoph & Mammen, Enno & Simoni, Anna, 2018. "Nonparametric estimation in case of endogenous selection," Journal of Econometrics, Elsevier, vol. 202(2), pages 268-285.
    3. Breunig, Christoph, 2017. "Testing Missing At Random Using Instrumental Variables," Rationality and Competition Discussion Paper Series 59, CRC TRR 190 Rationality and Competition.
    4. Breunig, Christoph, 2017. "Testing missing at random using instrumental variables," SFB 649 Discussion Papers 2017-007, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    5. repec:hum:wpaper:sfb649dp2017-007 is not listed on IDEAS
    6. Breunig, Christoph, 2021. "Varying random coefficient models," Journal of Econometrics, Elsevier, vol. 221(2), pages 381-408.
    7. Shengfang Tang & Zongwu Cai & Ying Fang & Ming Lin, 2019. "Testing Unconfoundedness Assumption Using Auxiliary Variables," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 201905, University of Kansas, Department of Economics, revised Mar 2019.
    8. Zheng Fang & Juwon Seo, 2019. "A Projection Framework for Testing Shape Restrictions That Form Convex Cones," Papers 1910.07689, arXiv.org, revised Sep 2021.
    9. Christoph Breunig & Stephan Martin, 2020. "Nonclassical Measurement Error in the Outcome Variable," Papers 2009.12665, arXiv.org, revised May 2021.
    10. Li, Jia & Liao, Zhipeng, 2020. "Uniform nonparametric inference for time series," Journal of Econometrics, Elsevier, vol. 219(1), pages 38-51.
    11. Dong, Chaohua & Gao, Jiti & Linton, Oliver, 2023. "High dimensional semiparametric moment restriction models," Journal of Econometrics, Elsevier, vol. 232(2), pages 320-345.
    12. Zhou, Weilun & Gao, Jiti & Harris, David & Kew, Hsein, 2024. "Semi-parametric single-index predictive regression models with cointegrated regressors," Journal of Econometrics, Elsevier, vol. 238(1).
    13. Egshiglen Batbayar & Christoph Breunig & Peter Haan & Boryana Ilieva, 2025. "Quantile Selection in the Gender Pay Gap," Papers 2511.16187, arXiv.org, revised Jan 2026.
    14. Davezies, Laurent & Le Barbanchon, Thomas, 2017. "Regression discontinuity design with continuous measurement error in the running variable," Journal of Econometrics, Elsevier, vol. 200(2), pages 260-281.
    15. repec:hum:wpaper:sfb649dp2015-016 is not listed on IDEAS
    16. repec:hum:wpaper:sfb649dp2015-050 is not listed on IDEAS
    17. Samuele Centorrino & Aman Ullah & Jing Xue, 2019. "Semiparametric Estimation of Correlated Random Coefficient Models without Instrumental Variables," Papers 1911.06857, arXiv.org.
    18. Li, Jia & Liao, Zhipeng & Zhou, Wenyu, 2025. "A general test for functional inequalities," Journal of Econometrics, Elsevier, vol. 251(C).
    19. Christoph Breunig & Stefan Hoderlein, 2016. "Nonparametric Specification Testing in Random Parameter Models," Boston College Working Papers in Economics 897, Boston College Department of Economics.
    20. Nan Liu & Yanbo Liu & Yuya Sasaki & Yuanyuan Wan, 2025. "Nonparametric Uniform Inference in Binary Classification and Policy Values," Papers 2511.14700, arXiv.org, revised Dec 2025.
    21. Dennis Kristensen, 2009. "Semiparametric Modelling and Estimation: A Selective Overview," CREATES Research Papers 2009-44, Department of Economics and Business Economics, Aarhus University.
    22. Breunig, Christoph, 2015. "Testing missing at random using instrumental variables," SFB 649 Discussion Papers 2015-016, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    23. Chen, Xiaohong & Pouzo, Demian, 2009. "Efficient estimation of semiparametric conditional moment models with possibly nonsmooth residuals," Journal of Econometrics, Elsevier, vol. 152(1), pages 46-60, September.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1810.00411. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.