IDEAS home Printed from https://ideas.repec.org/p/ehl/lserod/2167.html
   My bibliography  Save this paper

Estimation of semiparametric models when the criterion function is not smooth

Author

Listed:
  • Chen, Xiaohong
  • Linton, Oliver
  • Van Keilegom, Ingrid

Abstract

We provide easy to verify sufficient conditions for the consistency and asymptotic normality of a class of semiparametric optimization estimators where the criterion function does not obey standard smoothness conditions and simultaneously depends on some nonparametric estimators that can themselves depend on the parameters to be estimated. Our results extend existing theories like those of Pakes and Pollard (1989), Andrews (1994a) and Newey (1994). We also show that bootstrap provides asymptotically correct confidence regions for the finite dimensional parameters. We apply our results to two examples: a 'hit rate' and a partially linear median regression with some endogenous regressors.

Suggested Citation

  • Chen, Xiaohong & Linton, Oliver & Van Keilegom, Ingrid, 2003. "Estimation of semiparametric models when the criterion function is not smooth," LSE Research Online Documents on Economics 2167, London School of Economics and Political Science, LSE Library.
  • Handle: RePEc:ehl:lserod:2167
    as

    Download full text from publisher

    File URL: http://eprints.lse.ac.uk/2167/
    File Function: Open access version.
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Lee, Sokbae, 2003. "Efficient Semiparametric Estimation Of A Partially Linear Quantile Regression Model," Econometric Theory, Cambridge University Press, vol. 19(1), pages 1-31, February.
    2. Joel L. Horowitz, 1998. "Bootstrap Methods for Median Regression Models," Econometrica, Econometric Society, vol. 66(6), pages 1327-1352, November.
    3. Arthur Lewbel & Oliver Linton, 2002. "Nonparametric Censored and Truncated Regression," Econometrica, Econometric Society, vol. 70(2), pages 765-779, March.
    4. Andrews, Donald W K, 1994. "Asymptotics for Semiparametric Econometric Models via Stochastic Equicontinuity," Econometrica, Econometric Society, vol. 62(1), pages 43-72, January.
    5. Donald J. Brown & Marten H. Wegkamp, 2002. "Weighted Minimum Mean-Square Distance from Independence Estimation," Econometrica, Econometric Society, vol. 70(5), pages 2035-2051, September.
    6. Robinson, Peter M, 1988. "Root- N-Consistent Semiparametric Regression," Econometrica, Econometric Society, vol. 56(4), pages 931-954, July.
    7. Richard W. Blundell & Martin Browning & Ian A. Crawford, 2003. "Nonparametric Engel Curves and Revealed Preference," Econometrica, Econometric Society, vol. 71(1), pages 205-240, January.
    8. Linton, O. B. & Chen, R. & Härdle, Wolfgang, 1995. "An Analysis of Transformations for Additive Nonparanetric Regression," SFB 373 Discussion Papers 1995,68, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    9. Pakes, Ariel & Olley, Steven, 1995. "A limit theorem for a smooth class of semiparametric estimators," Journal of Econometrics, Elsevier, vol. 65(1), pages 295-332, January.
    10. Newey, Whitney K, 1994. "The Asymptotic Variance of Semiparametric Estimators," Econometrica, Econometric Society, vol. 62(6), pages 1349-1382, November.
    11. Manski, Charles F, 1983. "Closest Empirical Distribution Estimation," Econometrica, Econometric Society, vol. 51(2), pages 305-319, March.
    12. Hall, Peter & Horowitz, Joel L, 1996. "Bootstrap Critical Values for Tests Based on Generalized-Method-of-Moments Estimators," Econometrica, Econometric Society, vol. 64(4), pages 891-916, July.
    13. Newey, Whitney K. & McFadden, Daniel, 1986. "Large sample estimation and hypothesis testing," Handbook of Econometrics, in: R. F. Engle & D. McFadden (ed.), Handbook of Econometrics, edition 1, volume 4, chapter 36, pages 2111-2245, Elsevier.
    14. Pakes, Ariel & Pollard, David, 1989. "Simulation and the Asymptotics of Optimization Estimators," Econometrica, Econometric Society, vol. 57(5), pages 1027-1057, September.
    15. Andrews, Donald W.K., 1995. "Nonparametric Kernel Estimation for Semiparametric Models," Econometric Theory, Cambridge University Press, vol. 11(3), pages 560-586, June.
    16. Horowitz, Joel L, 1992. "A Smoothed Maximum Score Estimator for the Binary Response Model," Econometrica, Econometric Society, vol. 60(3), pages 505-531, May.
    17. Chen, Songnian & Khan, Shakeeb, 2001. "Semiparametric Estimation Of A Partially Linear Censored Regression Model," Econometric Theory, Cambridge University Press, vol. 17(3), pages 567-590, June.
    18. repec:cup:etheor:v:11:y:1995:i:3:p:560-96 is not listed on IDEAS
    19. Powell, James L., 1984. "Least absolute deviations estimation for the censored regression model," Journal of Econometrics, Elsevier, vol. 25(3), pages 303-325, July.
    20. Xiaohong Chen & Xiaotong Shen, 1998. "Sieve Extremum Estimates for Weakly Dependent Data," Econometrica, Econometric Society, vol. 66(2), pages 289-314, March.
    21. Manski, Charles F., 1975. "Maximum score estimation of the stochastic utility model of choice," Journal of Econometrics, Elsevier, vol. 3(3), pages 205-228, August.
    22. Michael G. Akritas & Ingrid Van Keilegom, 2001. "Non‐parametric Estimation of the Residual Distribution," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 28(3), pages 549-567, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaohong Chen & Oliver Linton & Ingred van Keilegom, 2002. "Estimation of semiparametric models when the criterion function is not smooth," CeMMAP working papers 02/02, Institute for Fiscal Studies.
    2. Chen, Xiaohong, 2007. "Large Sample Sieve Estimation of Semi-Nonparametric Models," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 76, Elsevier.
    3. Qi Li & Jeffrey Scott Racine, 2006. "Nonparametric Econometrics: Theory and Practice," Economics Books, Princeton University Press, edition 1, volume 1, number 8355.
    4. Ichimura, Hidehiko & Lee, Sokbae, 2010. "Characterization of the asymptotic distribution of semiparametric M-estimators," Journal of Econometrics, Elsevier, vol. 159(2), pages 252-266, December.
    5. repec:hal:journl:peer-00741628 is not listed on IDEAS
    6. Oliver Linton & Pedro Gozalo, 1996. "Conditional Independence Restrictions: Testing and Estimation," Cowles Foundation Discussion Papers 1140, Cowles Foundation for Research in Economics, Yale University.
    7. Mammen, Enno & Rothe, Christoph & Schienle, Melanie, 2016. "Semiparametric Estimation With Generated Covariates," Econometric Theory, Cambridge University Press, vol. 32(5), pages 1140-1177, October.
    8. Dong, Chaohua & Gao, Jiti & Linton, Oliver, 2023. "High dimensional semiparametric moment restriction models," Journal of Econometrics, Elsevier, vol. 232(2), pages 320-345.
    9. Lewbel, Arthur, 2000. "Semiparametric qualitative response model estimation with unknown heteroscedasticity or instrumental variables," Journal of Econometrics, Elsevier, vol. 97(1), pages 145-177, July.
    10. Ichimura, Hidehiko & Todd, Petra E., 2007. "Implementing Nonparametric and Semiparametric Estimators," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 74, Elsevier.
    11. Hidehiko Ichimura & Whitney K. Newey, 2022. "The influence function of semiparametric estimators," Quantitative Economics, Econometric Society, vol. 13(1), pages 29-61, January.
    12. Khan, Shakeeb & Powell, James L., 2001. "Two-step estimation of semiparametric censored regression models," Journal of Econometrics, Elsevier, vol. 103(1-2), pages 73-110, July.
    13. Torgovitsky, Alexander, 2017. "Minimum distance from independence estimation of nonseparable instrumental variables models," Journal of Econometrics, Elsevier, vol. 199(1), pages 35-48.
    14. Chernozhukov, Victor & Fernández-Val, Iván & Kowalski, Amanda E., 2015. "Quantile regression with censoring and endogeneity," Journal of Econometrics, Elsevier, vol. 186(1), pages 201-221.
    15. Pakes, Ariel & Olley, Steven, 1995. "A limit theorem for a smooth class of semiparametric estimators," Journal of Econometrics, Elsevier, vol. 65(1), pages 295-332, January.
    16. Kristensen, Dennis, 2004. "Estimation in two classes of semiparametric diffusion models," LSE Research Online Documents on Economics 24739, London School of Economics and Political Science, LSE Library.
    17. Joel L. Horowitz, 2018. "Bootstrap Methods in Econometrics," Papers 1809.04016, arXiv.org.
    18. Sadikoglu, Serhan, 2019. "Essays in econometric theory," Other publications TiSEM 99d83644-f9dc-49e3-a4e1-5, Tilburg University, School of Economics and Management.
    19. Joel L. Horowitz, 2018. "Bootstrap methods in econometrics," CeMMAP working papers CWP53/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    20. Ai, Chunrong & Chen, Xiaohong, 2007. "Estimation of possibly misspecified semiparametric conditional moment restriction models with different conditioning variables," Journal of Econometrics, Elsevier, vol. 141(1), pages 5-43, November.
    21. repec:hal:wpspec:info:hdl:2441/3vl5fe4i569nbr005tctlc8ll5 is not listed on IDEAS
    22. Chen, Xiaohong & Pouzo, Demian, 2009. "Efficient estimation of semiparametric conditional moment models with possibly nonsmooth residuals," Journal of Econometrics, Elsevier, vol. 152(1), pages 46-60, September.

    More about this item

    Keywords

    Empirical processes; non-smooth criterion; semiparametric estimation; stochastic equicontinuity;
    All these keywords.

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ehl:lserod:2167. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: LSERO Manager (email available below). General contact details of provider: https://edirc.repec.org/data/lsepsuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.