IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Conditional Independence Restrictions: Testing and Estimation

We propose a nonparametric empirical distribution function based test of an hypothesis of conditional independence between variables of interest. This hypothesis is of interest both for model specification purposes, parametric and semiparametric, and for non-model based testing of economic hypotheses. We allow for both discrete variables and estimated parameters. The asymptotic null distribution of the test statistic is a functional of a Gaussian process. A bootstrap procedure is proposed for calculating the critical values. Our test has power against alternatives at distance n^{-1/2} from the null; this result holding independently of dimension. Monte Carlo simulations provide evidence on size and power. Finally, we invert the test statistic to provide a method for estimating the parameters identified through the conditional independence restriction. They are asymptotically normal at rate root-n.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://cowles.econ.yale.edu/P/cd/d11a/d1140.pdf
Download Restriction: no

Paper provided by Cowles Foundation for Research in Economics, Yale University in its series Cowles Foundation Discussion Papers with number 1140.

as
in new window

Length: 47 pages
Date of creation: Nov 1996
Date of revision:
Handle: RePEc:cwl:cwldpp:1140
Contact details of provider: Postal: Yale University, Box 208281, New Haven, CT 06520-8281 USA
Phone: (203) 432-3702
Fax: (203) 432-6167
Web page: http://cowles.econ.yale.edu/

More information through EDIRC

Order Information: Postal: Cowles Foundation, Yale University, Box 208281, New Haven, CT 06520-8281 USA

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Hiemstra, Craig & Jones, Jonathan D, 1994. " Testing for Linear and Nonlinear Granger Causality in the Stock Price-Volume Relation," Journal of Finance, American Finance Association, vol. 49(5), pages 1639-64, December.
  2. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Publishing House "SINERGIA PRESS", vol. 33(1), pages 125-132.
  3. Stoker, Thomas M, 1986. "Consistent Estimation of Scaled Coefficients," Econometrica, Econometric Society, vol. 54(6), pages 1461-81, November.
  4. D. Pollard, 1980. "The minimum distance method of testing," Metrika, Springer, vol. 27(1), pages 43-70, December.
  5. Chamberlain, Gary, 1987. "Asymptotic efficiency in estimation with conditional moment restrictions," Journal of Econometrics, Elsevier, vol. 34(3), pages 305-334, March.
  6. Hardle, W., 1992. "Applied Nonparametric Methods," Papers 9204, Catholique de Louvain - Institut de statistique.
  7. Haerdle,W. & Janssen,P. & Serfling,R., 1986. "Strong uniform consistency rates for estimators of conditional functionals," Discussion Paper Serie A 63, University of Bonn, Germany.
  8. Oliver LINTON, . "Applied nonparametric methods," Statistic und Oekonometrie 9312, Humboldt Universitaet Berlin.
  9. Granger, C.W.J. & Thomson, P. J., 1987. "Predictive Consequences of Using Conditioning or Causal Variables," Econometric Theory, Cambridge University Press, vol. 3(01), pages 150-152, February.
  10. Robinson, P M, 1991. "Consistent Nonparametric Entropy-Based Testing," Review of Economic Studies, Wiley Blackwell, vol. 58(3), pages 437-53, May.
  11. Phillips, Peter C. B., 1988. "Conditional and unconditional statistical independence," Journal of Econometrics, Elsevier, vol. 38(3), pages 341-348, July.
  12. Ichimura, H., 1991. "Semiparametric Least Squares (sls) and Weighted SLS Estimation of Single- Index Models," Papers 264, Minnesota - Center for Economic Research.
  13. Horowitz, Joel L, 1992. "A Smoothed Maximum Score Estimator for the Binary Response Model," Econometrica, Econometric Society, vol. 60(3), pages 505-31, May.
  14. Herman J. Bierens & Werner Ploberger, 1997. "Asymptotic Theory of Integrated Conditional Moment Tests," Econometrica, Econometric Society, vol. 65(5), pages 1129-1152, September.
  15. Joel L. Horowitz, 1996. "Bootstrap Methods in Econometrics: Theory and Numerical Performance," Econometrics 9602009, EconWPA, revised 05 Mar 1996.
  16. James Heckman & Hidehiko Ichimura & Jeffrey Smith & Petra Todd, 1998. "Characterizing Selection Bias Using Experimental Data," Econometrica, Econometric Society, vol. 66(5), pages 1017-1098, September.
  17. Fan, Yanqin & Li, Qi, 1996. "Consistent Model Specification Tests: Omitted Variables and Semiparametric Functional Forms," Econometrica, Econometric Society, vol. 64(4), pages 865-90, July.
  18. repec:cup:etheor:v:11:y:1995:i:3:p:560-96 is not listed on IDEAS
  19. Han, Aaron K., 1987. "A non-parametric analysis of transformations," Journal of Econometrics, Elsevier, vol. 35(2-3), pages 191-209, July.
  20. Hong, Yongmiao & White, Halbert, 1995. "Consistent Specification Testing via Nonparametric Series Regression," Econometrica, Econometric Society, vol. 63(5), pages 1133-59, September.
  21. Andrews, Donald W.K., 1995. "Nonparametric Kernel Estimation for Semiparametric Models," Econometric Theory, Cambridge University Press, vol. 11(03), pages 560-586, June.
  22. Newey, Whitney K, 1990. "Semiparametric Efficiency Bounds," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 5(2), pages 99-135, April-Jun.
  23. Donald W.K. Andrews, 1996. "A Conditional Kolmogorov Test," Cowles Foundation Discussion Papers 1111R, Cowles Foundation for Research in Economics, Yale University.
  24. Manski, Charles F., 1975. "Maximum score estimation of the stochastic utility model of choice," Journal of Econometrics, Elsevier, vol. 3(3), pages 205-228, August.
  25. Pakes, Ariel & Pollard, David, 1989. "Simulation and the Asymptotics of Optimization Estimators," Econometrica, Econometric Society, vol. 57(5), pages 1027-57, September.
  26. Florens, Jean-Pierre & Fougere, Denis, 1996. "Noncausality in Continuous Time," Econometrica, Econometric Society, vol. 64(5), pages 1195-1212, September.
  27. Manski, Charles F, 1983. "Closest Empirical Distribution Estimation," Econometrica, Econometric Society, vol. 51(2), pages 305-19, March.
  28. Hall, Peter & Horowitz, Joel L, 1996. "Bootstrap Critical Values for Tests Based on Generalized-Method-of-Moments Estimators," Econometrica, Econometric Society, vol. 64(4), pages 891-916, July.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:cwl:cwldpp:1140. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Glena Ames)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.