IDEAS home Printed from
MyIDEAS: Login to save this paper or follow this series

Testing Conditional Independence via Rosenblatt Transforms

  • Kyungchul Song


    (Department of Economics, University of Pennsylvania)

Registered author(s):

    This paper investigates the problem of testing conditional independence of Y and Z given λθ(X) for some unknown θ ∈ Θ ⊂ Rd, for a parametric function λθ(•). For instance, such a problem is relevant in recent literatures of heterogeneous treatment effects and contract theory. First, this paper finds that using Rosenblatt transforms in a certain way, we can construct a class of tests that are asymptotically pivotal and asymptotically unbiased against √n-converging Pitman local alternatives. The asymptotic pivotalness is convenient especially because the asymptotic critical values remain invariant over different estimators of the unknown parameter θ. Even when tests are asymptotically pivotal, however, it is often the case that simulation methods to obtain asymptotic critical values are yet unavailable or complicated, and hence this paper suggests a simple wild bootstrap procedure. A special case of the proposed testing framework is to test the presence of quantile treatment effects in a program evaluation data set. Using the JTPA training data set, we investigate the validity of nonexperimental procedures for inferences about quantile treatment effects of the job training program.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: no

    Paper provided by Penn Institute for Economic Research, Department of Economics, University of Pennsylvania in its series PIER Working Paper Archive with number 07-026.

    in new window

    Length: 52 pages
    Date of creation: 05 Sep 2007
    Date of revision:
    Handle: RePEc:pen:papers:07-026
    Contact details of provider: Postal: 3718 Locust Walk, Philadelphia, PA 19104
    Phone: 215-898-9992
    Fax: 215-573-2378
    Web page:

    More information through EDIRC

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as in new window
    1. Keisuke Hirano & Guido W. Imbens & Geert Ridder, 2000. "Efficient Estimation of Average Treatment Effects Using the Estimated Propensity Score," NBER Technical Working Papers 0251, National Bureau of Economic Research, Inc.
    2. Heckman, James J & Ichimura, Hidehiko & Todd, Petra E, 1997. "Matching as an Econometric Evaluation Estimator: Evidence from Evaluating a Job Training Programme," Review of Economic Studies, Wiley Blackwell, vol. 64(4), pages 605-54, October.
    3. Pierre-André Chiappori & Bruno Jullien & Bernard Salanié & François Salanié, 2002. "Asymmetric Information in Insurance : General Testable Implications," Working Papers 2002-42, Centre de Recherche en Economie et Statistique.
    4. Andrews, Donald W.K., 1995. "Nonparametric Kernel Estimation for Semiparametric Models," Econometric Theory, Cambridge University Press, vol. 11(03), pages 560-586, June.
    5. Xiaohong Chen & Oliver Linton & Ingrid Van Keilegom, 2003. "Estimation of semiparametric models when the criterion function is not smooth," LSE Research Online Documents on Economics 2167, London School of Economics and Political Science, LSE Library.
    6. Joshua D. Angrist & Guido M. Kuersteiner, 2004. "Semiparametric Causality Tests Using the Policy Propensity Score," NBER Working Papers 10975, National Bureau of Economic Research, Inc.
    7. Alberto Abadie & Joshua Angrist & Guido Imbens, 1999. "Instrumental Variables Estimates of the Effect of Subsidized Training on the Quantiles of Trainee Earnings," Working papers 99-16, Massachusetts Institute of Technology (MIT), Department of Economics.
    8. Bierens, H.J., 1989. "A consistent conditional moment test of functional form," Serie Research Memoranda 0064, VU University Amsterdam, Faculty of Economics, Business Administration and Econometrics.
    9. Jeffrey Smith & Petra Todd, 2003. "Does Matching Overcome Lalonde's Critique of Nonexperimental Estimators?," University of Western Ontario, CIBC Centre for Human Capital and Productivity Working Papers 20035, University of Western Ontario, CIBC Centre for Human Capital and Productivity.
    10. James Heckman & Hidehiko Ichimura & Jeffrey Smith & Petra Todd, 1998. "Characterizing Selection Bias Using Experimental Data," NBER Working Papers 6699, National Bureau of Economic Research, Inc.
    11. Peter C.B. Phillips, 1987. "Conditional and Unconditional Statistical Independence," Cowles Foundation Discussion Papers 824R, Cowles Foundation for Research in Economics, Yale University, revised Dec 1987.
    12. Herman J. Bierens & Werner Ploberger, 1997. "Asymptotic Theory of Integrated Conditional Moment Tests," Econometrica, Econometric Society, vol. 65(5), pages 1129-1152, September.
    13. Petra E. Todd & Jeffrey A. Smith, 2001. "Reconciling Conflicting Evidence on the Performance of Propensity-Score Matching Methods," American Economic Review, American Economic Association, vol. 91(2), pages 112-118, May.
    14. Joseph G. Altonji & Rosa L. Matzkin, 2005. "Cross Section and Panel Data Estimators for Nonseparable Models with Endogenous Regressors," Econometrica, Econometric Society, vol. 73(4), pages 1053-1102, 07.
    15. Juan Carlos Escanciano & Kyungchul Song, 2007. "Asymptotically Optimal Tests for Single-Index Restrictions with a Focus on Average Partial Effects," PIER Working Paper Archive 07-005, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    16. Tomas Philipson & John Cawley, 1999. "An Empirical Examination of Information Barriers to Trade in Insurance," American Economic Review, American Economic Association, vol. 89(4), pages 827-846, September.
    17. Heckman, James J & Smith, Jeffrey, 1997. "Making the Most Out of Programme Evaluations and Social Experiments: Accounting for Heterogeneity in Programme Impacts," Review of Economic Studies, Wiley Blackwell, vol. 64(4), pages 487-535, October.
    18. repec:cep:stiecm:/2003/450 is not listed on IDEAS
    19. Su, Liangjun & White, Halbert, 2003. "Testing Conditional Independence Via Empirical Likelihood," University of California at San Diego, Economics Working Paper Series qt35v8g0fm, Department of Economics, UC San Diego.
    20. Jinyong Hahn, 1998. "On the Role of the Propensity Score in Efficient Semiparametric Estimation of Average Treatment Effects," Econometrica, Econometric Society, vol. 66(2), pages 315-332, March.
    21. Victor Chernozhukov & Christian Hansen, 2005. "An IV Model of Quantile Treatment Effects," Econometrica, Econometric Society, vol. 73(1), pages 245-261, 01.
    22. Whang, Yoon-Jae, 2000. "Consistent bootstrap tests of parametric regression functions," Journal of Econometrics, Elsevier, vol. 98(1), pages 27-46, September.
    23. Stinchcombe, Maxwell B. & White, Halbert, 1998. "Consistent Specification Testing With Nuisance Parameters Present Only Under The Alternative," Econometric Theory, Cambridge University Press, vol. 14(03), pages 295-325, June.
    24. Rajeev H. Dehejia & Sadek Wahba, 1998. "Causal Effects in Non-Experimental Studies: Re-Evaluating the Evaluation of Training Programs," NBER Working Papers 6586, National Bureau of Economic Research, Inc.
    25. Donald W.K. Andrews, 1996. "A Conditional Kolmogorov Test," Cowles Foundation Discussion Papers 1111R, Cowles Foundation for Research in Economics, Yale University.
    26. LaLonde, Robert J, 1986. "Evaluating the Econometric Evaluations of Training Programs with Experimental Data," American Economic Review, American Economic Association, vol. 76(4), pages 604-20, September.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:pen:papers:07-026. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dolly Guarini)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.