IDEAS home Printed from https://ideas.repec.org/p/pen/papers/07-026.html
   My bibliography  Save this paper

Testing Conditional Independence via Rosenblatt Transforms

Author

Listed:
  • Kyungchul Song

    () (Department of Economics, University of Pennsylvania)

Abstract

This paper investigates the problem of testing conditional independence of Y and Z given λθ(X) for some unknown θ ∈ Θ ⊂ Rd, for a parametric function λθ(•). For instance, such a problem is relevant in recent literatures of heterogeneous treatment effects and contract theory. First, this paper finds that using Rosenblatt transforms in a certain way, we can construct a class of tests that are asymptotically pivotal and asymptotically unbiased against √n-converging Pitman local alternatives. The asymptotic pivotalness is convenient especially because the asymptotic critical values remain invariant over different estimators of the unknown parameter θ. Even when tests are asymptotically pivotal, however, it is often the case that simulation methods to obtain asymptotic critical values are yet unavailable or complicated, and hence this paper suggests a simple wild bootstrap procedure. A special case of the proposed testing framework is to test the presence of quantile treatment effects in a program evaluation data set. Using the JTPA training data set, we investigate the validity of nonexperimental procedures for inferences about quantile treatment effects of the job training program.

Suggested Citation

  • Kyungchul Song, 2007. "Testing Conditional Independence via Rosenblatt Transforms," PIER Working Paper Archive 07-026, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
  • Handle: RePEc:pen:papers:07-026
    as

    Download full text from publisher

    File URL: https://economics.sas.upenn.edu/sites/default/files/filevault/working-papers/07-026.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. LaLonde, Robert J, 1986. "Evaluating the Econometric Evaluations of Training Programs with Experimental Data," American Economic Review, American Economic Association, vol. 76(4), pages 604-620, September.
    2. Pierre‐André Chiappori & Bruno Jullien & Bernard Salanié & François Salanié, 2006. "Asymmetric information in insurance: general testable implications," RAND Journal of Economics, RAND Corporation, vol. 37(4), pages 783-798, December.
    3. A. Smith, Jeffrey & E. Todd, Petra, 2005. "Does matching overcome LaLonde's critique of nonexperimental estimators?," Journal of Econometrics, Elsevier, vol. 125(1-2), pages 305-353.
    4. James J. Heckman & Hidehiko Ichimura & Petra E. Todd, 1997. "Matching As An Econometric Evaluation Estimator: Evidence from Evaluating a Job Training Programme," Review of Economic Studies, Oxford University Press, vol. 64(4), pages 605-654.
    5. Alberto Abadie & Joshua Angrist & Guido Imbens, 2002. "Instrumental Variables Estimates of the Effect of Subsidized Training on the Quantiles of Trainee Earnings," Econometrica, Econometric Society, vol. 70(1), pages 91-117, January.
    6. Herman J. Bierens & Werner Ploberger, 1997. "Asymptotic Theory of Integrated Conditional Moment Tests," Econometrica, Econometric Society, vol. 65(5), pages 1129-1152, September.
    7. Donald W. K. Andrews, 1997. "A Conditional Kolmogorov Test," Econometrica, Econometric Society, vol. 65(5), pages 1097-1128, September.
    8. Xiaohong Chen & Oliver Linton & Ingrid Van Keilegom, 2003. "Estimation of Semiparametric Models when the Criterion Function Is Not Smooth," Econometrica, Econometric Society, vol. 71(5), pages 1591-1608, September.
    9. James J. Heckman & Jeffrey Smith & Nancy Clements, 1997. "Making The Most Out Of Programme Evaluations and Social Experiments: Accounting For Heterogeneity in Programme Impacts," Review of Economic Studies, Oxford University Press, vol. 64(4), pages 487-535.
    10. Joseph G. Altonji & Rosa L. Matzkin, 2005. "Cross Section and Panel Data Estimators for Nonseparable Models with Endogenous Regressors," Econometrica, Econometric Society, vol. 73(4), pages 1053-1102, July.
    11. Keisuke Hirano & Guido W. Imbens & Geert Ridder, 2003. "Efficient Estimation of Average Treatment Effects Using the Estimated Propensity Score," Econometrica, Econometric Society, vol. 71(4), pages 1161-1189, July.
    12. Petra E. Todd & Jeffrey A. Smith, 2001. "Reconciling Conflicting Evidence on the Performance of Propensity-Score Matching Methods," American Economic Review, American Economic Association, vol. 91(2), pages 112-118, May.
    13. Rajeev H. Dehejia & Sadek Wahba, 1998. "Causal Effects in Non-Experimental Studies: Re-Evaluating the Evaluation of Training Programs," NBER Working Papers 6586, National Bureau of Economic Research, Inc.
    14. Andrews, Donald W.K., 1995. "Nonparametric Kernel Estimation for Semiparametric Models," Econometric Theory, Cambridge University Press, vol. 11(03), pages 560-586, June.
    15. Su, Liangjun & White, Halbert, 2014. "Testing conditional independence via empirical likelihood," Journal of Econometrics, Elsevier, vol. 182(1), pages 27-44.
    16. Bierens, Herman J, 1990. "A Consistent Conditional Moment Test of Functional Form," Econometrica, Econometric Society, vol. 58(6), pages 1443-1458, November.
    17. Stinchcombe, Maxwell B. & White, Halbert, 1998. "Consistent Specification Testing With Nuisance Parameters Present Only Under The Alternative," Econometric Theory, Cambridge University Press, vol. 14(03), pages 295-325, June.
    18. Juan Carlos Escanciano & Kyungchul Song, 2007. "Asymptotically Optimal Tests for Single-Index Restrictions with a Focus on Average Partial Effects," PIER Working Paper Archive 07-005, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    19. Jinyong Hahn, 1998. "On the Role of the Propensity Score in Efficient Semiparametric Estimation of Average Treatment Effects," Econometrica, Econometric Society, vol. 66(2), pages 315-332, March.
    20. Tomas Philipson & John Cawley, 1999. "An Empirical Examination of Information Barriers to Trade in Insurance," American Economic Review, American Economic Association, vol. 89(4), pages 827-846, September.
    21. Phillips, Peter C. B., 1988. "Conditional and unconditional statistical independence," Journal of Econometrics, Elsevier, vol. 38(3), pages 341-348, July.
    22. Victor Chernozhukov & Christian Hansen, 2005. "An IV Model of Quantile Treatment Effects," Econometrica, Econometric Society, vol. 73(1), pages 245-261, January.
    23. James Heckman & Hidehiko Ichimura & Jeffrey Smith & Petra Todd, 1998. "Characterizing Selection Bias Using Experimental Data," Econometrica, Econometric Society, vol. 66(5), pages 1017-1098, September.
    24. Whang, Yoon-Jae, 2000. "Consistent bootstrap tests of parametric regression functions," Journal of Econometrics, Elsevier, vol. 98(1), pages 27-46, September.
    25. Joshua D. Angrist & Guido M. Kuersteiner, 2004. "Semiparametric Causality Tests Using the Policy Propensity Score," NBER Working Papers 10975, National Bureau of Economic Research, Inc.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sokbae Lee & Yoon-Jae Whang, 2009. "Nonparametric tests of conditional treatment effects," CeMMAP working papers CWP36/09, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.

    More about this item

    Keywords

    Conditional independence; asymptotic pivotal tests; Rosenblatt transforms; wild bootstrap;

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pen:papers:07-026. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Administrator). General contact details of provider: http://edirc.repec.org/data/deupaus.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.