IDEAS home Printed from https://ideas.repec.org/p/cwl/cwldpp/1075.html
   My bibliography  Save this paper

Local Nonlinear Least Squares Estimation: Using Parametric Information Nonparametrically

Author

Listed:

Abstract

We introduce a new kernel smoother for nonparametric regression that uses prior information on regression shape in the form of a parametric model. In effect, we nonparametrically encompass the parametric model. We derive pointwise and uniform consistency and the asymptotic distribution of our procedure. It has superior performance to the usual kernel estimators at or near the parametric model. It is particularly well motivated for binary data using the probit or logit parametric model as a base. We include an application to the Horowitz (1993) transport choice dataset.

Suggested Citation

  • Pedro Gozalo & Oliver Linton, 1994. "Local Nonlinear Least Squares Estimation: Using Parametric Information Nonparametrically," Cowles Foundation Discussion Papers 1075, Cowles Foundation for Research in Economics, Yale University.
  • Handle: RePEc:cwl:cwldpp:1075
    as

    Download full text from publisher

    File URL: http://cowles.yale.edu/sites/default/files/files/pub/d10/d1075.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Horowitz, Joel L., 1993. "Semiparametric estimation of a work-trip mode choice model," Journal of Econometrics, Elsevier, vol. 58(1-2), pages 49-70, July.
    2. Hardle, Wolfgang & Linton, Oliver, 1986. "Applied nonparametric methods," Handbook of Econometrics,in: R. F. Engle & D. McFadden (ed.), Handbook of Econometrics, edition 1, volume 4, chapter 38, pages 2295-2339 Elsevier.
    3. Fenton, Victor M & Gallant, A Ronald, 1996. "Convergence Rates of SNP Density Estimators," Econometrica, Econometric Society, vol. 64(3), pages 719-727, May.
    4. Pakes, Ariel & Pollard, David, 1989. "Simulation and the Asymptotics of Optimization Estimators," Econometrica, Econometric Society, vol. 57(5), pages 1027-1057, September.
    5. Horowitz, Joel L, 1992. "A Smoothed Maximum Score Estimator for the Binary Response Model," Econometrica, Econometric Society, vol. 60(3), pages 505-531, May.
    6. Stoker, Thomas M, 1986. "Consistent Estimation of Scaled Coefficients," Econometrica, Econometric Society, vol. 54(6), pages 1461-1481, November.
    7. Masry, Elias, 1996. "Multivariate regression estimation local polynomial fitting for time series," Stochastic Processes and their Applications, Elsevier, vol. 65(1), pages 81-101, December.
    8. Manski, Charles F., 1975. "Maximum score estimation of the stochastic utility model of choice," Journal of Econometrics, Elsevier, vol. 3(3), pages 205-228, August.
    9. Douglas A. McManus, 1994. "Making the Cobb-Douglas functional form an efficient nonparametric estimator through localization," Finance and Economics Discussion Series 94-31, Board of Governors of the Federal Reserve System (U.S.).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lewbel, Arthur & Linton, Oliver, 2003. "Nonparametric estimation of homothetic and homothetically separable functions," LSE Research Online Documents on Economics 2066, London School of Economics and Political Science, LSE Library.
    2. Mittelhammer, Ron C Dr. & Judge, George G., 2008. "A Minimum Power Divergence Class of CDFs and Estimators for Binary Choice Models," Department of Agricultural & Resource Economics, UC Berkeley, Working Paper Series qt7bc2828q, Department of Agricultural & Resource Economics, UC Berkeley.
    3. Arthur Lewbel & Oliver Linton, 2007. "Nonparametric Matching and Efficient Estimators of Homothetically Separable Functions," Econometrica, Econometric Society, vol. 75(4), pages 1209-1227, July.
    4. Arthur Lewbel, 2007. "Estimation of Average Treatment Effects with Misclassification," Econometrica, Econometric Society, vol. 75(2), pages 537-551, March.
    5. Mittelhammer, Ron C. & Judge, George, 2011. "A family of empirical likelihood functions and estimators for the binary response model," Journal of Econometrics, Elsevier, vol. 164(2), pages 207-217, October.
    6. Bossaerts, Peter & Hillion, Pierre, 1997. "Local parametric analysis of hedging in discrete time," Journal of Econometrics, Elsevier, vol. 81(1), pages 243-272, November.
    7. Bossaerts, P.L.M. & Hillion, P., 1995. "Local Parametric Analysis of Hedging in Discrete Time," Discussion Paper 1995-23, Tilburg University, Center for Economic Research.
    8. Rosa Bernardini Papalia, 1999. "Local generalized method of moments estimation based on kernel weights: An application to panel data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 26(8), pages 1005-1015.
    9. Gozalo, Pedro L., 1997. "Nonparametric bootstrap analysis with applications to demographic effects in demand functions," Journal of Econometrics, Elsevier, vol. 81(2), pages 357-393, December.

    More about this item

    Keywords

    Kernel; nonparametric regression; parametric regression; binary choice;

    JEL classification:

    • C4 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics
    • C5 - Mathematical and Quantitative Methods - - Econometric Modeling

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cwl:cwldpp:1075. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Matthew Regan). General contact details of provider: http://edirc.repec.org/data/cowleus.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.