IDEAS home Printed from
   My bibliography  Save this article

Binary Response Models: Logits, Probits and Semiparametrics


  • Joel L. Horowitz
  • N. E. Savin


A binary-response model is a mean-regression model in which the dependent variable takes only the values zero and one. This paper describes and illustrates the estimation of logit and probit binary-response models. The linear probability model is also discussed. Reasons for not using this model in applied research are explained and illustrated with data. Semiparametric and nonparametric models are also described. In contrast to logit and probit models, semi- and nonparametric models avoid the restrictive and unrealistic assumption that the analyst knows the functional form of the relation between the dependent variable and the explanatory variables.

Suggested Citation

  • Joel L. Horowitz & N. E. Savin, 2001. "Binary Response Models: Logits, Probits and Semiparametrics," Journal of Economic Perspectives, American Economic Association, vol. 15(4), pages 43-56, Fall.
  • Handle: RePEc:aea:jecper:v:15:y:2001:i:4:p:43-56 Note: DOI: 10.1257/jep.15.4.43

    Download full text from publisher

    File URL:
    Download Restriction: no

    References listed on IDEAS

    1. Hardle, Wolfgang & Linton, Oliver, 1986. "Applied nonparametric methods," Handbook of Econometrics,in: R. F. Engle & D. McFadden (ed.), Handbook of Econometrics, edition 1, volume 4, chapter 38, pages 2295-2339 Elsevier.
    2. Geweke, John & Keane, Michael P & Runkle, David, 1994. "Alternative Computational Approaches to Inference in the Multinomial Probit Model," The Review of Economics and Statistics, MIT Press, vol. 76(4), pages 609-632, November.
    3. Manski, Charles F., 1985. "Semiparametric analysis of discrete response : Asymptotic properties of the maximum score estimator," Journal of Econometrics, Elsevier, vol. 27(3), pages 313-333, March.
    4. Geweke, John F. & Keane, Michael P. & Runkle, David E., 1997. "Statistical inference in the multinomial multiperiod probit model," Journal of Econometrics, Elsevier, vol. 80(1), pages 125-165, September.
    5. Hajivassiliou, Vassilis A. & Ruud, Paul A., 1986. "Classical estimation methods for LDV models using simulation," Handbook of Econometrics,in: R. F. Engle & D. McFadden (ed.), Handbook of Econometrics, edition 1, volume 4, chapter 40, pages 2383-2441 Elsevier.
    6. Pakes, Ariel & Pollard, David, 1989. "Simulation and the Asymptotics of Optimization Estimators," Econometrica, Econometric Society, vol. 57(5), pages 1027-1057, September.
    7. Matzkin, Rosa L., 1993. "Nonparametric identification and estimation of polychotomous choice models," Journal of Econometrics, Elsevier, vol. 58(1-2), pages 137-168, July.
    8. Horowitz, Joel L, 1992. "A Smoothed Maximum Score Estimator for the Binary Response Model," Econometrica, Econometric Society, vol. 60(3), pages 505-531, May.
    9. Rosa L. Matzkin, 1988. "Nonparametric and Distribution-Free Estimation of the Binary Choice and the Threshold-Crossing Models," Cowles Foundation Discussion Papers 889, Cowles Foundation for Research in Economics, Yale University.
    10. Amemiya, Takeshi, 1981. "Qualitative Response Models: A Survey," Journal of Economic Literature, American Economic Association, vol. 19(4), pages 1483-1536, December.
    11. Daniel McFadden, 1977. "Quantitative Methods for Analyzing Travel Behaviour of Individuals: Some Recent Developments," Cowles Foundation Discussion Papers 474, Cowles Foundation for Research in Economics, Yale University.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Daniel McFadden, 2014. "The new science of pleasure: consumer choice behavior and the measurement of well-being," Chapters,in: Handbook of Choice Modelling, chapter 2, pages 7-48 Edward Elgar Publishing.
    2. Coussement, Kristof & Benoit, Dries Frederik & Van den Poel, Dirk, 2009. "Improved Marketing Decision Making in a Customer Churn Prediction Context Using Generalized Additive Models," Working Papers 2009/18, Hogeschool-Universiteit Brussel, Faculteit Economie en Management.
    3. Preißner, Stephanie & Raasch, Christina & Schweisfurth, Tim, 2017. "Is necessity the mother of disruption?," Kiel Working Papers 2097, Kiel Institute for the World Economy (IfW).
    4. Peter Davis & Pasquale Schiraldi, 2014. "The flexible coefficient multinomial logit (FC-MNL) model of demand for differentiated products," RAND Journal of Economics, RAND Corporation, vol. 45(1), pages 32-63, March.
    5. Pere Riera & Raúl Brey & Guillermo Gándara, 2008. "Bid design for non-parametric contingent valuation with a single bounded dichotomous choice format," Hacienda Pública Española, IEF, vol. 186(3), pages 43-60, October.
    6. Justin Doran & Declan Jordan & Eoin O'Leary, 2012. "The Effects of National and International Interaction on Innovation: Evidence from the Irish CIS: 2004--06," Industry and Innovation, Taylor & Francis Journals, vol. 19(5), pages 371-390, July.
    7. John Geweke & Joel Horowitz & M. Hashem Pesaran, 2006. "Econometrics: A Bird’s Eye View," CESifo Working Paper Series 1870, CESifo Group Munich.
    8. Mudiwa, Benjamin, 2011. "A Logit Estimation of Factors Determining Adoption of Conservation Farming by Smallholder Farmers in the Semi-Arid Areas of Zimbabwe," Research Theses 198516, Collaborative Masters Program in Agricultural and Applied Economics.
    9. Paul Koster & Hans Koster, 2013. "Analysing Heterogeneity in the Value of Travel Time and Reliability: A Semiparametric Estimation Approach," ERSA conference papers ersa13p1032, European Regional Science Association.
    10. Topitzes, James & Mersky, Joshua P. & Dezen, Kristin A. & Reynolds, Arthur J., 2013. "Adult resilience among maltreated children: A prospective investigation of main effect and mediating models," Children and Youth Services Review, Elsevier, vol. 35(6), pages 937-949.
    11. Agnello, Luca & Schuknecht, Ludger, 2011. "Booms and busts in housing markets: Determinants and implications," Journal of Housing Economics, Elsevier, vol. 20(3), pages 171-190, September.
    12. Colubi, Ana & González-Rodri­guez, Gil & Domi­nguez-Cuesta, Mari­a José & Jiménez-Sánchez, Montserrat, 2008. "Favorability functions based on kernel density estimation for logistic models: A case study," Computational Statistics & Data Analysis, Elsevier, vol. 52(9), pages 4533-4543, May.
    13. Petri Böckerman, 2004. "Perception of Job Instability in Europe," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 67(3), pages 283-314, July.
    14. Horowitz, Joel L., 2004. "Comments on "Size Matters"," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 33(5), pages 551-554, November.
    15. Horowitz, Joel L. & Lee, Sokbae, 2005. "Nonparametric Estimation of an Additive Quantile Regression Model," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 1238-1249, December.
    16. Stefano Mainardi, 2004. "Regional Disparities and Migration: Linear and Switching Model Estimations for Poland," Regional Studies, Taylor & Francis Journals, vol. 38(7), pages 767-781.
    17. Gregory Connor & Thomas Flavin, 2013. "Irish Mortgage Default Optionality," Economics, Finance and Accounting Department Working Paper Series n243-13.pdf, Department of Economics, Finance and Accounting, National University of Ireland - Maynooth.
    18. Geenens, Gery & Simar, Léopold, 2010. "Nonparametric tests for conditional independence in two-way contingency tables," Journal of Multivariate Analysis, Elsevier, vol. 101(4), pages 765-788, April.
    19. Mutter, Felix & Pawlowski, Tim, 2014. "Role models in sports – Can success in professional sports increase the demand for amateur sport participation?," Sport Management Review, Elsevier, vol. 17(3), pages 324-336.

    More about this item

    JEL classification:

    • C25 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Discrete Regression and Qualitative Choice Models; Discrete Regressors; Proportions; Probabilities


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aea:jecper:v:15:y:2001:i:4:p:43-56. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Jane Voros) or (Michael P. Albert). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.