IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Mixture of normals probit models

  • John F. Geweke
  • Michael P. Keane

This paper generalizes the normal probit model of dichotomous choice by introducing mixtures of normals distributions for the disturbance term. By mixing on both the mean and variance parameters and by increasing the number of distributions in the mixture these models effectively remove the normality assumption and are much closer to semiparametric models. When a Bayesian approach is taken, there is an exact finite-sample distribution theory for the choice probability conditional on the covariates. The paper uses artificial data to show how posterior odds ratios can discriminate between normal and nonnormal distributions in probit models. The method is also applied to female labor force participation decisions in a sample with 1,555 observations from the PSID. In this application, Bayes factors strongly favor mixture of normals probit models over the conventional probit model, and the most favored models have mixtures of four normal distributions for the disturbance term.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://minneapolisfed.org/research/common/pub_detail.cfm?pb_autonum_id=645
Download Restriction: no

File URL: http://minneapolisfed.org/research/sr/sr237.pdf
Download Restriction: no

Paper provided by Federal Reserve Bank of Minneapolis in its series Staff Report with number 237.

as
in new window

Length:
Date of creation: 1997
Date of revision:
Handle: RePEc:fip:fedmsr:237
Contact details of provider: Postal: 90 Hennepin Avenue, P.O. Box 291, Minneapolis, MN 55480-0291
Phone: (612) 204-5000
Web page: http://minneapolisfed.org/
More information through EDIRC

Order Information: Web: http://www.minneapolisfed.org/pubs/ Email:


References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Zellner, Arnold & Rossi, Peter E., 1984. "Bayesian analysis of dichotomous quantal response models," Journal of Econometrics, Elsevier, vol. 25(3), pages 365-393, July.
  2. John F. Geweke & Michael P. Keane & David E. Runkle, 1994. "Statistical inference in the multinomial multiperiod probit model," Staff Report 177, Federal Reserve Bank of Minneapolis.
  3. Lewbel, Arthur, 1997. "Semiparametric Estimation of Location and Other Discrete Choice Moments," Econometric Theory, Cambridge University Press, vol. 13(01), pages 32-51, February.
  4. Keane, Michael P, 1992. "A Note on Identification in the Multinomial Probit Model," Journal of Business & Economic Statistics, American Statistical Association, vol. 10(2), pages 193-200, April.
  5. Powell, James L & Stock, James H & Stoker, Thomas M, 1989. "Semiparametric Estimation of Index Coefficients," Econometrica, Econometric Society, vol. 57(6), pages 1403-30, November.
  6. repec:cup:etheor:v:13:y:1997:i:1:p:32-51 is not listed on IDEAS
  7. Manski, Charles F., 1985. "Semiparametric analysis of discrete response : Asymptotic properties of the maximum score estimator," Journal of Econometrics, Elsevier, vol. 27(3), pages 313-333, March.
  8. D. McFadden & J. Hausman, 1981. "Specification Tests for the Multinominal Logit Model," Working papers 292, Massachusetts Institute of Technology (MIT), Department of Economics.
  9. Klein, Roger W & Spady, Richard H, 1993. "An Efficient Semiparametric Estimator for Binary Response Models," Econometrica, Econometric Society, vol. 61(2), pages 387-421, March.
  10. John Geweke & Michael Keane & David Runkle, 1994. "Alternative computational approaches to inference in the multinomial probit model," Staff Report 170, Federal Reserve Bank of Minneapolis.
  11. Roberts, G. O. & Smith, A. F. M., 1994. "Simple conditions for the convergence of the Gibbs sampler and Metropolis-Hastings algorithms," Stochastic Processes and their Applications, Elsevier, vol. 49(2), pages 207-216, February.
  12. Horowitz, Joel L, 1992. "A Smoothed Maximum Score Estimator for the Binary Response Model," Econometrica, Econometric Society, vol. 60(3), pages 505-31, May.
  13. John Geweke, . "Posterior Simulators in Econometrics," Computing in Economics and Finance 1996 _019, Society for Computational Economics.
  14. Geweke, J, 1993. "Bayesian Treatment of the Independent Student- t Linear Model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 8(S), pages S19-40, Suppl. De.
  15. Koop, Gary & Poirier, Dale J., 1993. "Bayesian analysis of logit models using natural conjugate priors," Journal of Econometrics, Elsevier, vol. 56(3), pages 323-340, April.
  16. Ichimura, H., 1991. "Semiparametric Least Squares (sls) and Weighted SLS Estimation of Single- Index Models," Papers 264, Minnesota - Center for Economic Research.
  17. Cosslett, Stephen R, 1983. "Distribution-Free Maximum Likelihood Estimator of the Binary Choice Model," Econometrica, Econometric Society, vol. 51(3), pages 765-82, May.
  18. Gallant, A Ronald & Nychka, Douglas W, 1987. "Semi-nonparametric Maximum Likelihood Estimation," Econometrica, Econometric Society, vol. 55(2), pages 363-90, March.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:fip:fedmsr:237. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Janelle Ruswick)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.