IDEAS home Printed from
   My bibliography  Save this paper

Posterior simulators in econometrics


  • John Geweke


Economics is the discipline of using data to revise beliefs about economic issues. In Bayesian econometrics, the revision is conducted in accordance with the laws of probability, conditional on what has been observed. The normative appeal of Bayesian econometrics is the same as that of expected utility maximization and Bayesian learning, the dominant paradigms in economic theory. The questions that econometrics ultimately addresses are similar to those faced by economic agents in models, as well. Given the observed data, what decisions should be made? After bringing data to bear on two alternative models, how is their relative plausibility changed? Any survey of the introductory and concluding sections of papers in the academic literature should provide more examples and illustrate the process of formally or informally updating beliefs. Until quite recently, applied Bayesian econometrics was undertaken largely by those primarily concerned with contributing to the theory, and the proportion of applied work that was formally Bayesian was rather small. There are several reasons for this. First, Bayesian econometrics demands both a likelihood function and a prior distribution, whereas non-Bayesian methods do not. Second, the subjective prior distribution has to be defended, and if the reader (or worse, the editor) does not agree, then the work may be ignored. Third, most posterior moments can't be obtained anyway because the requisite integrals can't be evaluated.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • John Geweke, 1995. "Posterior simulators in econometrics," Working Papers 555, Federal Reserve Bank of Minneapolis.
  • Handle: RePEc:fip:fedmwp:555

    Download full text from publisher

    File URL:
    Download Restriction: no

    File URL:
    Download Restriction: no

    Other versions of this item:

    More about this item


    Econometric models;


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fip:fedmwp:555. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kate Hansel (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.