IDEAS home Printed from https://ideas.repec.org/p/ags/ucbecw/37759.html
   My bibliography  Save this paper

A Minimum Power Divergence Class of CDFs and Estimators for Binary Choice Models

Author

Listed:
  • Mittelhammer, Ronald C.
  • Judge, George G.

Abstract

The Cressie-Read (CR) family of power divergence measures is used to identify a new class of statistical models and estimators for competing explanations of the data in binary choice models. A large flexible class of cumulative distribution functions and associated probability density functions emerge that subsumes the conventional logit model, and forms the basis for a large set of estimation alternatives to traditional logit and probit methods. Asymptotic properties of estimators are identified, and sampling experiments are used to provide a basis for gauging the finite sample performance of the estimators in this new class of statistical models.

Suggested Citation

  • Mittelhammer, Ronald C. & Judge, George G., 2008. "A Minimum Power Divergence Class of CDFs and Estimators for Binary Choice Models," CUDARE Working Papers 37759, University of California, Berkeley, Department of Agricultural and Resource Economics.
  • Handle: RePEc:ags:ucbecw:37759
    DOI: 10.22004/ag.econ.37759
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/37759/files/CUDARE%201059%20Mittelhammer%20and%20Judge.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.37759?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Hansen, Lars Peter, 1982. "Large Sample Properties of Generalized Method of Moments Estimators," Econometrica, Econometric Society, vol. 50(4), pages 1029-1054, July.
    2. Pedro Gozalo & Oliver Linton, 1994. "Local Nonlinear Least Squares Estimation: Using Parametric Information Nonparametrically," Cowles Foundation Discussion Papers 1075, Cowles Foundation for Research in Economics, Yale University.
    3. McFadden, Daniel L., 1984. "Econometric analysis of qualitative response models," Handbook of Econometrics, in: Z. Griliches† & M. D. Intriligator (ed.), Handbook of Econometrics, edition 1, volume 2, chapter 24, pages 1395-1457, Elsevier.
    4. Newey, Whitney K, 1991. "Uniform Convergence in Probability and Stochastic Equicontinuity," Econometrica, Econometric Society, vol. 59(4), pages 1161-1167, July.
    5. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521766555, July.
    6. Gabler, Siegfried & Laisney, Francois & Lechner, Michael, 1993. "Seminonparametric Estimation of Binary-Choice Models with an Application to Labor-Force Participation," Journal of Business & Economic Statistics, American Statistical Association, vol. 11(1), pages 61-80, January.
    7. Yuan, Ke-Hai & Jennrich, Robert I., 1998. "Asymptotics of Estimating Equations under Natural Conditions," Journal of Multivariate Analysis, Elsevier, vol. 65(2), pages 245-260, May.
    8. Smith, Richard J., 2007. "Efficient information theoretic inference for conditional moment restrictions," Journal of Econometrics, Elsevier, vol. 138(2), pages 430-460, June.
    9. Klein, Roger W & Spady, Richard H, 1993. "An Efficient Semiparametric Estimator for Binary Response Models," Econometrica, Econometric Society, vol. 61(2), pages 387-421, March.
    10. Horowitz, Joel L, 1992. "A Smoothed Maximum Score Estimator for the Binary Response Model," Econometrica, Econometric Society, vol. 60(3), pages 505-531, May.
    11. Manski, Charles F., 1975. "Maximum score estimation of the stochastic utility model of choice," Journal of Econometrics, Elsevier, vol. 3(3), pages 205-228, August.
    12. Cosslett, Stephen R, 1983. "Distribution-Free Maximum Likelihood Estimator of the Binary Choice Model," Econometrica, Econometric Society, vol. 51(3), pages 765-782, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mittelhammer, Ron C. & Judge, George, 2011. "A family of empirical likelihood functions and estimators for the binary response model," Journal of Econometrics, Elsevier, vol. 164(2), pages 207-217, October.
    2. Mittelhammer, Ron C & Judge, George G. & Miller, Douglas J & Cardell, N. Scott, 2005. "Minimum Divergence Moment Based Binary Response Models: Estimation and Inference," Department of Agricultural & Resource Economics, UC Berkeley, Working Paper Series qt1546s6rn, Department of Agricultural & Resource Economics, UC Berkeley.
    3. Mittelhammer, Ron C & Judge, George G. & Miller, Douglas J & Cardell, N. Scott, 2005. "Minimum Divergence Moment Based Binary Response Models: Estimation and Inference," Department of Agricultural & Resource Economics, UC Berkeley, Working Paper Series qt1546s6rn, Department of Agricultural & Resource Economics, UC Berkeley.
    4. Giuseppe De Luca, 2008. "SNP and SML estimation of univariate and bivariate binary-choice models," Stata Journal, StataCorp LLC, vol. 8(2), pages 190-220, June.
    5. Heinz König & Michael Lechner, 1994. "Some Recent Developments in Microeconometrics - A Survey," Swiss Journal of Economics and Statistics (SJES), Swiss Society of Economics and Statistics (SSES), vol. 130(III), pages 299-331, September.
    6. Chen, Xiaohong, 2007. "Large Sample Sieve Estimation of Semi-Nonparametric Models," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 76, Elsevier.
    7. Claudia PIGINI, 2012. "Of Butterflies and Caterpillars: Bivariate Normality in the Sample Selection Model," Working Papers 377, Universita' Politecnica delle Marche (I), Dipartimento di Scienze Economiche e Sociali.
    8. Ichimura, Hidehiko & Todd, Petra E., 2007. "Implementing Nonparametric and Semiparametric Estimators," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 74, Elsevier.
    9. Park, Byeong U. & Simar, Léopold & Zelenyuk, Valentin, 2017. "Nonparametric estimation of dynamic discrete choice models for time series data," Computational Statistics & Data Analysis, Elsevier, vol. 108(C), pages 97-120.
    10. Lahiri, Kajal & Yang, Liu, 2013. "Forecasting Binary Outcomes," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1025-1106, Elsevier.
    11. Chen, Le-Yu & Lee, Sokbae, 2019. "Breaking the curse of dimensionality in conditional moment inequalities for discrete choice models," Journal of Econometrics, Elsevier, vol. 210(2), pages 482-497.
    12. Bergtold, Jason S. & Ramsey, Steven M., 2015. "Neural Network Estimators of Binary Choice Processes: Estimation, Marginal Effects and WTP," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 205649, Agricultural and Applied Economics Association.
    13. Jason R. Blevins, 2013. "Non-Standard Rates of Convergence of Criterion-Function-Based Set Estimators," Working Papers 13-02, Ohio State University, Department of Economics.
    14. Magnac, Thierry & Maurin, Eric, 2007. "Identification and information in monotone binary models," Journal of Econometrics, Elsevier, vol. 139(1), pages 76-104, July.
    15. Mogens Fosgerau, 2024. "Nonparametric approaches to describing heterogeneity," Chapters, in: Stephane Hess & Andrew Daly (ed.), Handbook of Choice Modelling, chapter 11, pages 308-318, Edward Elgar Publishing.
    16. Weiren Wang, 1997. "Semi-parametric estimation of the effect of health on labour force participation of married women," Applied Economics, Taylor & Francis Journals, vol. 29(3), pages 325-329.
    17. Pigini Claudia, 2015. "Bivariate Non-Normality in the Sample Selection Model," Journal of Econometric Methods, De Gruyter, vol. 4(1), pages 123-144, January.
    18. Steven M. Ramsey & Jason S. Bergtold, 2021. "Examining Inferences from Neural Network Estimators of Binary Choice Processes: Marginal Effects, and Willingness-to-Pay," Computational Economics, Springer;Society for Computational Economics, vol. 58(4), pages 1137-1165, December.
    19. Komarova, Tatiana, 2013. "Binary choice models with discrete regressors: Identification and misspecification," Journal of Econometrics, Elsevier, vol. 177(1), pages 14-33.
    20. Martin O'Connell & Pierre Dubois & Rachel Griffith, 2022. "The Use of Scanner Data for Economics Research," Annual Review of Economics, Annual Reviews, vol. 14(1), pages 723-745, August.

    More about this item

    Keywords

    Research Methods/Statistical Methods;

    JEL classification:

    • C10 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - General
    • C2 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:ucbecw:37759. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/dabrkus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.