IDEAS home Printed from https://ideas.repec.org/a/eee/econom/v165y2011i1p112-127.html
   My bibliography  Save this article

A consistent nonparametric test for nonlinear causality—Specification in time series regression

Author

Listed:
  • Nishiyama, Yoshihiko
  • Hitomi, Kohtaro
  • Kawasaki, Yoshinori
  • Jeong, Kiho

Abstract

Since the pioneering work by Granger (1969), many authors have proposed tests of causality between economic time series. Most of them are concerned only with “linear causality in mean”, or if a series linearly affects the (conditional) mean of the other series. It is no doubt of primary interest, but dependence between series may be nonlinear, and/or not only through the conditional mean. Indeed conditional heteroskedastic models are widely studied recently. The purpose of this paper is to propose a nonparametric test for possibly nonlinear causality. Taking into account that dependence in higher order moments are becoming an important issue especially in financial time series, we also consider a test for causality up to the Kth conditional moment. Statistically, we can also view this test as a nonparametric omitted variable test in time series regression. A desirable property of the test is that it has nontrivial power against T1/2-local alternatives, where T is the sample size. Also, we can form a test statistic accordingly if we have some knowledge on the alternative hypothesis. Furthermore, we show that the test statistic includes most of the omitted variable test statistics as special cases asymptotically. The null asymptotic distribution is not normal, but we can easily calculate the critical regions by simulation. Monte Carlo experiments show that the proposed test has good size and power properties.

Suggested Citation

  • Nishiyama, Yoshihiko & Hitomi, Kohtaro & Kawasaki, Yoshinori & Jeong, Kiho, 2011. "A consistent nonparametric test for nonlinear causality—Specification in time series regression," Journal of Econometrics, Elsevier, vol. 165(1), pages 112-127.
  • Handle: RePEc:eee:econom:v:165:y:2011:i:1:p:112-127
    DOI: 10.1016/j.jeconom.2011.05.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304407611001023
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hansen, Bruce E., 2008. "Uniform Convergence Rates For Kernel Estimation With Dependent Data," Econometric Theory, Cambridge University Press, vol. 24(03), pages 726-748, June.
    2. P. M. Robinson, 1989. "Hypothesis Testing in Semiparametric and Nonparametric Models for Econometric Time Series," Review of Economic Studies, Oxford University Press, vol. 56(4), pages 511-534.
    3. Hosoya, Yuzo, 1977. "On the Granger Condition for Non-Causality," Econometrica, Econometric Society, vol. 45(7), pages 1735-1736, October.
    4. Qiao, Zhuo & McAleer, Michael & Wong, Wing-Keung, 2009. "Linear and nonlinear causality between changes in consumption and consumer attitudes," Economics Letters, Elsevier, vol. 102(3), pages 161-164, March.
    5. Lütkepohl, Helmut & POSKITT, D.S., 1996. "Testing for Causation Using Infinite Order Vector Autoregressive Processes," Econometric Theory, Cambridge University Press, vol. 12(01), pages 61-87, March.
    6. Herman J. Bierens & Werner Ploberger, 1997. "Asymptotic Theory of Integrated Conditional Moment Tests," Econometrica, Econometric Society, vol. 65(5), pages 1129-1152, September.
    7. Chen, Xiaohong & Fan, Yanqin, 1999. "Consistent hypothesis testing in semiparametric and nonparametric models for econometric time series," Journal of Econometrics, Elsevier, vol. 91(2), pages 373-401, August.
    8. Fan, Yanqin & Li, Qi, 1996. "Consistent Model Specification Tests: Omitted Variables and Semiparametric Functional Forms," Econometrica, Econometric Society, vol. 64(4), pages 865-890, July.
    9. Granger, C W J, 1969. "Investigating Causal Relations by Econometric Models and Cross-Spectral Methods," Econometrica, Econometric Society, vol. 37(3), pages 424-438, July.
    10. Bierens, Herman J, 1990. "A Consistent Conditional Moment Test of Functional Form," Econometrica, Econometric Society, vol. 58(6), pages 1443-1458, November.
    11. Hiemstra, Craig & Jones, Jonathan D, 1994. " Testing for Linear and Nonlinear Granger Causality in the Stock Price-Volume Relation," Journal of Finance, American Finance Association, vol. 49(5), pages 1639-1664, December.
    12. Sims, Christopher A, 1972. "Money, Income, and Causality," American Economic Review, American Economic Association, vol. 62(4), pages 540-552, September.
    13. Hong, Yongmiao & White, Halbert, 1995. "Consistent Specification Testing via Nonparametric Series Regression," Econometrica, Econometric Society, vol. 63(5), pages 1133-1159, September.
    14. Newey, Whitney K., 1997. "Convergence rates and asymptotic normality for series estimators," Journal of Econometrics, Elsevier, vol. 79(1), pages 147-168, July.
    15. Javier Hidalgo, 2000. "Nonparametric Test for Causality with Long-Range Dependence," Econometrica, Econometric Society, vol. 68(6), pages 1465-1490, November.
    16. Whang, Yoon-Jae, 2000. "Consistent bootstrap tests of parametric regression functions," Journal of Econometrics, Elsevier, vol. 98(1), pages 27-46, September.
    17. Hidalgo, Javier, 2000. "Nonparametric test for causality with long-range dependence," LSE Research Online Documents on Economics 6866, London School of Economics and Political Science, LSE Library.
    18. Sims, Christopher A & Stock, James H & Watson, Mark W, 1990. "Inference in Linear Time Series Models with Some Unit Roots," Econometrica, Econometric Society, vol. 58(1), pages 113-144, January.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Nonlinear causality; Causality up to Kth moment; Nonparametric test; Omitted variables test; Local alternatives;

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:165:y:2011:i:1:p:112-127. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/jeconom .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.