IDEAS home Printed from https://ideas.repec.org/p/cwl/cwldpp/1066.html
   My bibliography  Save this paper

A Limit Theorem for a Smooth Class of Semiparametric Estimators

Author

Listed:

Abstract

We consider an econometric model based on a set of moment conditions which are indexed by both a finite dimensional parameter vector of interest, and an infinite dimensional parameter, h, which in turn depends upon both and another infinite dimensional parameter, tau. The model assumes that the moment conditions equal zero at the true value of all unknown parameters. Estimators of are obtained by forming nonparametric estimates of h and tau, substituting them into the sample analog of the moment conditions, and choosing that value of that makes the sample moments as "close as possible" to zero. Using independence and smoothness assumptions the paper provides consistency, root{n} consistency, and asymptotic normality proofs for the resultant estimator. As an example, we consider Olley and Pakes' (1991) use of semiparametric techniques to control for both simultaneity and selection biases in estimating production functions. This example illustrates how semiparametric techniques can be used to overcome both computational problems, and the need for strong functional form restrictions, in obtaining estimates from structural models. We also provide two additional sets of empirical results for this example. First we compare the estimators of theta obtained using different estimators for the nonparametric components of the problem, and then we compare alternative estimators for the estimated standard errors of those estimators.

Suggested Citation

  • Ariel Pakes & Steven Olley, 1994. "A Limit Theorem for a Smooth Class of Semiparametric Estimators," Cowles Foundation Discussion Papers 1066, Cowles Foundation for Research in Economics, Yale University.
  • Handle: RePEc:cwl:cwldpp:1066
    as

    Download full text from publisher

    File URL: https://cowles.yale.edu/sites/default/files/files/pub/d10/d1066.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Hansen, Lars Peter, 1982. "Large Sample Properties of Generalized Method of Moments Estimators," Econometrica, Econometric Society, vol. 50(4), pages 1029-1054, July.
    2. Andrews, Donald W K, 1991. "Asymptotic Normality of Series Estimators for Nonparametric and Semiparametric Regression Models," Econometrica, Econometric Society, vol. 59(2), pages 307-345, March.
    3. V. Joseph Hotz & Robert A. Miller, 1993. "Conditional Choice Probabilities and the Estimation of Dynamic Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 60(3), pages 497-529.
    4. Andrews, Donald W.K., 1995. "Nonparametric Kernel Estimation for Semiparametric Models," Econometric Theory, Cambridge University Press, vol. 11(3), pages 560-586, June.
    5. Murray Brown, 1967. "The Theory and Empirical Analysis of Production," NBER Books, National Bureau of Economic Research, Inc, number brow67-1.
    6. Olley, G Steven & Pakes, Ariel, 1996. "The Dynamics of Productivity in the Telecommunications Equipment Industry," Econometrica, Econometric Society, vol. 64(6), pages 1263-1297, November.
    7. Powell, James L & Stock, James H & Stoker, Thomas M, 1989. "Semiparametric Estimation of Index Coefficients," Econometrica, Econometric Society, vol. 57(6), pages 1403-1430, November.
    8. Newey, Whitney K, 1994. "The Asymptotic Variance of Semiparametric Estimators," Econometrica, Econometric Society, vol. 62(6), pages 1349-1382, November.
    9. Ariel Pakes, 1991. "Dynamic Structural Models: Problems and Prospects. Mixed Continuous Discrete Controls and Market Interactions," Cowles Foundation Discussion Papers 984, Cowles Foundation for Research in Economics, Yale University.
    10. Andrews, Donald W K, 1994. "Asymptotics for Semiparametric Econometric Models via Stochastic Equicontinuity," Econometrica, Econometric Society, vol. 62(1), pages 43-72, January.
    11. Robinson, Peter M, 1988. "Root- N-Consistent Semiparametric Regression," Econometrica, Econometric Society, vol. 56(4), pages 931-954, July.
    12. Pakes, Ariel & Pollard, David, 1989. "Simulation and the Asymptotics of Optimization Estimators," Econometrica, Econometric Society, vol. 57(5), pages 1027-1057, September.
    13. Newey, W.K., 1993. "Convergence Rates for Series Estimators," Working papers 93-10, Massachusetts Institute of Technology (MIT), Department of Economics.
    14. Zvi Griliches, 1967. "Production Functions in Manufacturing: Some Preliminary Results," NBER Chapters, in: The Theory and Empirical Analysis of Production, pages 275-340, National Bureau of Economic Research, Inc.
    15. Stoker, Thomas M., 1991. "Smoothing bias in density derivative estimation," Working papers 3336-91., Massachusetts Institute of Technology (MIT), Sloan School of Management.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mammen, Enno & Rothe, Christoph & Schienle, Melanie, 2016. "Semiparametric Estimation With Generated Covariates," Econometric Theory, Cambridge University Press, vol. 32(5), pages 1140-1177, October.
    2. Ichimura, Hidehiko & Todd, Petra E., 2007. "Implementing Nonparametric and Semiparametric Estimators," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 74, Elsevier.
    3. Hidehiko Ichimura & Whitney K. Newey, 2022. "The influence function of semiparametric estimators," Quantitative Economics, Econometric Society, vol. 13(1), pages 29-61, January.
    4. Song, Suyong, 2015. "Semiparametric estimation of models with conditional moment restrictions in the presence of nonclassical measurement errors," Journal of Econometrics, Elsevier, vol. 185(1), pages 95-109.
    5. Olley, G Steven & Pakes, Ariel, 1996. "The Dynamics of Productivity in the Telecommunications Equipment Industry," Econometrica, Econometric Society, vol. 64(6), pages 1263-1297, November.
    6. Chen, Xiaohong, 2007. "Large Sample Sieve Estimation of Semi-Nonparametric Models," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 76, Elsevier.
    7. Maican, Florin G., 2012. "From Boom to Bust and Back Again: A dynamic analysis of IT services," Working Papers in Economics 543, University of Gothenburg, Department of Economics.
    8. Xiaohong Chen & Oliver Linton & Ingrid Van Keilegom, 2003. "Estimation of Semiparametric Models when the Criterion Function Is Not Smooth," Econometrica, Econometric Society, vol. 71(5), pages 1591-1608, September.
    9. Dong, Chaohua & Gao, Jiti & Linton, Oliver, 2023. "High dimensional semiparametric moment restriction models," Journal of Econometrics, Elsevier, vol. 232(2), pages 320-345.
    10. Ichimura, Hidehiko & Lee, Sokbae, 2010. "Characterization of the asymptotic distribution of semiparametric M-estimators," Journal of Econometrics, Elsevier, vol. 159(2), pages 252-266, December.
    11. Srisuma, Sorawoot & Linton, Oliver, 2012. "Semiparametric estimation of Markov decision processes with continuous state space," Journal of Econometrics, Elsevier, vol. 166(2), pages 320-341.
    12. repec:hum:wpaper:sfb649dp2014-043 is not listed on IDEAS
    13. Chen, Xiaohong & Linton, Oliver & Jacho-Chávez, David T., 2009. "An alternative way of computing efficient instrumental variable estimators," LSE Research Online Documents on Economics 58016, London School of Economics and Political Science, LSE Library.
    14. Xiaohong Chen & Andres Santos, 2018. "Overidentification in Regular Models," Econometrica, Econometric Society, vol. 86(5), pages 1771-1817, September.
    15. Victor Chernozhukov & Juan Carlos Escanciano & Hidehiko Ichimura & Whitney K. Newey & James M. Robins, 2022. "Locally Robust Semiparametric Estimation," Econometrica, Econometric Society, vol. 90(4), pages 1501-1535, July.
    16. Ramdan Dridi, 2000. "Simulated Asymptotic Least Squares Theory," STICERD - Econometrics Paper Series 396, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    17. Dridi, Ramdan, 2000. "Simulated asymptotic least squares theory," LSE Research Online Documents on Economics 6861, London School of Economics and Political Science, LSE Library.
    18. Xiaohong Chen & Oliver Linton & Ingred van Keilegom, 2002. "Estimation of semiparametric models when the criterion function is not smooth," CeMMAP working papers 02/02, Institute for Fiscal Studies.
    19. Qi Li & Jeffrey Scott Racine, 2006. "Nonparametric Econometrics: Theory and Practice," Economics Books, Princeton University Press, edition 1, volume 1, number 8355.
    20. Lewbel, Arthur & McFadden, Daniel & Linton, Oliver, 2011. "Estimating features of a distribution from binomial data," Journal of Econometrics, Elsevier, vol. 162(2), pages 170-188, June.
    21. Bravo, Francesco & Chu, Ba M. & Jacho-Chávez, David T., 2017. "Generalized empirical likelihood M testing for semiparametric models with time series data," Econometrics and Statistics, Elsevier, vol. 4(C), pages 18-30.

    More about this item

    Keywords

    Semiparametric m-estimators; selection and simultaneity biases in production functions;

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C24 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Truncated and Censored Models; Switching Regression Models; Threshold Regression Models
    • L11 - Industrial Organization - - Market Structure, Firm Strategy, and Market Performance - - - Production, Pricing, and Market Structure; Size Distribution of Firms

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cwl:cwldpp:1066. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Brittany Ladd (email available below). General contact details of provider: https://edirc.repec.org/data/cowleus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.