IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Nonparametric Censored and Truncated Regression

  • Arthur Lewbel

    (Boston College)

  • Oliver Linton

    (Yale University and London School of Economics)

The nonparametric censored regression model, with a fixed, known censoring point (normalized to zero), is y=max[0,m(x)+e], where both the regression function m(x) and the distribution of the error e are unknown. This paper provides consistent estimators of m(x) and its derivatives with respect to each element of x. The convergence rate is the same as for an uncensored nonparametric regression and its derivatives. We also provide root n estimates of weighted average derivatives of m(x), which equal the coefficients in linear or partly linear specifications for m(x). Some estimators already exist for randomly censored nonparametric models, but we provide estimators for fixed censoring, and for truncated regression. The estimators are based on the relationship that the derivative of E(y|x) with respect to m(x) equals E[I(y>0)|x]. We derive A similar expression involving higher moments of y also, which is required for the truncated regression model. An advantage of our estimator is that, unlike quantile methods, no a priori information is required regarding the degree of censoring at each x. Also error symmetry is not assumed. Another advantage is that our estimator extends to nonparametric truncated regression, so m(x) and its derivates can be estimated when only observations having m(x) + e > 0 are observed. We also provide an extension that permits estimation in the presence of a general form of heteroscedasticity.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://fmwww.bc.edu/RePEc/es2000/1237.pdf
File Function: main text
Download Restriction: no

Paper provided by Econometric Society in its series Econometric Society World Congress 2000 Contributed Papers with number 1237.

as
in new window

Length:
Date of creation: 01 Aug 2000
Date of revision:
Handle: RePEc:ecm:wc2000:1237
Contact details of provider: Phone: 1 212 998 3820
Fax: 1 212 995 4487
Web page: http://www.econometricsociety.org/pastmeetings.asp
Email:


More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. repec:cup:etheor:v:11:y:1995:i:3:p:560-96 is not listed on IDEAS
  2. repec:cup:etheor:v:13:y:1997:i:1:p:32-51 is not listed on IDEAS
  3. Lewbel, Arthur, 1995. "Consistent nonparametric hypothesis tests with an application to Slutsky symmetry," Journal of Econometrics, Elsevier, vol. 67(2), pages 379-401, June.
  4. Newey, Whitney K, 1994. "The Asymptotic Variance of Semiparametric Estimators," Econometrica, Econometric Society, vol. 62(6), pages 1349-82, November.
  5. Honore, Bo E. & Powell, James L., 1994. "Pairwise difference estimators of censored and truncated regression models," Journal of Econometrics, Elsevier, vol. 64(1-2), pages 241-278.
  6. Dabrowska, D. M., 1995. "Nonparametric Regression with Censored Covariates," Journal of Multivariate Analysis, Elsevier, vol. 54(2), pages 253-283, August.
  7. Hardle, W., 1992. "Applied Nonparametric Methods," Papers 9204, Catholique de Louvain - Institut de statistique.
  8. Lewbel, Arthur, 2000. "Semiparametric qualitative response model estimation with unknown heteroscedasticity or instrumental variables," Journal of Econometrics, Elsevier, vol. 97(1), pages 145-177, July.
  9. Lewbel, Arthur, 1997. "Semiparametric Estimation of Location and Other Discrete Choice Moments," Econometric Theory, Cambridge University Press, vol. 13(01), pages 32-51, February.
  10. Oliver LINTON, . "Applied nonparametric methods," Statistic und Oekonometrie 9312, Humboldt Universitaet Berlin.
  11. Andrews, Donald W K & Schafgans, Marcia M A, 1998. "Semiparametric Estimation of the Intercept of a Sample Selection Model," Review of Economic Studies, Wiley Blackwell, vol. 65(3), pages 497-517, July.
  12. McDonald, John F & Moffitt, Robert A, 1980. "The Uses of Tobit Analysis," The Review of Economics and Statistics, MIT Press, vol. 62(2), pages 318-21, May.
  13. Horowitz, Joel L., 1986. "A distribution-free least squares estimator for censored linear regression models," Journal of Econometrics, Elsevier, vol. 32(1), pages 59-84, June.
  14. Moon, Choon-Geol, 1989. "A Monte Carlo Comparison of Semiparametric Tobit Estimators," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 4(4), pages 361-82, Oct.-Dec..
  15. Hausman, J.A. & Newey, W.K., 1992. "Nonparametric Estimation of Exact Consumers Surplus and Deadweight Loss," Working papers 93-2, Massachusetts Institute of Technology (MIT), Department of Economics.
  16. Haerdle,Wolfgang & Stoker,Thomas, 1987. "Investigations smooth multiple regression by the method of average derivatives," Discussion Paper Serie A 107, University of Bonn, Germany.
  17. Horowitz, J.L., 1998. "Nonparametric Estimation of a Generalized Additive Model with an Unknown Link Function," Working Papers 98-05, University of Iowa, Department of Economics.
  18. Amemiya, Takeshi, 1973. "Regression Analysis when the Dependent Variable is Truncated Normal," Econometrica, Econometric Society, vol. 41(6), pages 997-1016, November.
  19. Andrews, Donald W.K., 1995. "Nonparametric Kernel Estimation for Semiparametric Models," Econometric Theory, Cambridge University Press, vol. 11(03), pages 560-586, June.
  20. Moshe Buchinsky & Jinyong Hahn, 1998. "An Alternative Estimator for the Censored Quantile Regression Model," Econometrica, Econometric Society, vol. 66(3), pages 653-672, May.
  21. Fernandez, Luis, 1986. "Non-parametric maximum likelihood estimation of censored regression models," Journal of Econometrics, Elsevier, vol. 32(1), pages 35-57, June.
  22. Wolfgang HÄRDLE & O. LINTON, 1995. "Nonparametric Regression," SFB 373 Discussion Papers 1995,29, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
  23. Arthur Lewbel, 1998. "Semiparametric Latent Variable Model Estimation with Endogenous or Mismeasured Regressors," Econometrica, Econometric Society, vol. 66(1), pages 105-122, January.
  24. Masry, Elias, 1996. "Multivariate regression estimation local polynomial fitting for time series," Stochastic Processes and their Applications, Elsevier, vol. 65(1), pages 81-101, December.
  25. J. Horowitz, 1998. "Nonparametric Estimation of a Generalized Additive Model with an Unknown Link Function," SFB 373 Discussion Papers 1998,83, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
  26. Collomb, Gérard & Härdle, Wolfgang, 1986. "Strong uniform convergence rates in robust nonparametric time series analysis and prediction: Kernel regression estimation from dependent observations," Stochastic Processes and their Applications, Elsevier, vol. 23(1), pages 77-89, October.
  27. Duncan, Gregory M., 1986. "A semi-parametric censored regression estimator," Journal of Econometrics, Elsevier, vol. 32(1), pages 5-34, June.
  28. Ahn, Hyungtaik, 1995. "Nonparametric two-stage estimation of conditional choice probabilities in a binary choice model under uncertainty," Journal of Econometrics, Elsevier, vol. 67(2), pages 337-378, June.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:ecm:wc2000:1237. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christopher F. Baum)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.