IDEAS home Printed from https://ideas.repec.org/p/ecm/wc2000/0651.html
   My bibliography  Save this paper

A Simple Consistent Non-parametric Estimator of the Regression Function in a Truncated Sample

Author

Listed:
  • Armando Levy

    (North Carolina State University)

Abstract

Much recent work has focused on the estimation of regression functions in samples which are truncated or censored. Much of this work has focused on the estimation of a parametric regression function with an error distribution of unknown form. While these method relax a strong parametric assumption about which we seldom have a priori information, they still impose a strong parametric assumption on the regression equation (which is presumably the focus of the analysis). Here we take the other approach. An estimator is proposed for the problem of non-parametric regression when the sample is truncated above or below some known threshold of the dependent variable. We specify the error distribution up to a vector of parameters while estimating the regression function without assuming a parametric form. A simple ``backfit'' estimator based on an initial kernel smooth is proposed. We establish consistency results for this estimator when the error distribution is known up to a finite parameter vector and satisfies some regularity conditions. A small monte-carlo study is performed to ascertain the finite sample properties of the estimator. The estimator is found to perform well in our experiment: achieving reasonableaverage absolute errors relative to the maximum likelihood estimator- especially when truncation is severe.

Suggested Citation

  • Armando Levy, 2000. "A Simple Consistent Non-parametric Estimator of the Regression Function in a Truncated Sample," Econometric Society World Congress 2000 Contributed Papers 0651, Econometric Society.
  • Handle: RePEc:ecm:wc2000:0651
    as

    Download full text from publisher

    File URL: http://fmwww.bc.edu/RePEc/es2000/0651.pdf
    File Function: main text
    Download Restriction: no

    References listed on IDEAS

    as
    1. Ruud, Paul A., 1986. "Consistent estimation of limited dependent variable models despite misspecification of distribution," Journal of Econometrics, Elsevier, vol. 32(1), pages 157-187, June.
    2. Horowitz, Joel L., 1986. "A distribution-free least squares estimator for censored linear regression models," Journal of Econometrics, Elsevier, vol. 32(1), pages 59-84, June.
    3. Powell, James L, 1986. "Symmetrically Trimmed Least Squares Estimation for Tobit Models," Econometrica, Econometric Society, vol. 54(6), pages 1435-1460, November.
    4. Goldberger, Arthur S., 1981. "Linear regression after selection," Journal of Econometrics, Elsevier, vol. 15(3), pages 357-366, April.
    5. Ahn, Hyungtaik & Powell, James L., 1993. "Semiparametric estimation of censored selection models with a nonparametric selection mechanism," Journal of Econometrics, Elsevier, vol. 58(1-2), pages 3-29, July.
    6. Duncan, Gregory M., 1986. "A semi-parametric censored regression estimator," Journal of Econometrics, Elsevier, vol. 32(1), pages 5-34, June.
    7. Lee, Lung-fei, 1994. "Semiparametric two-stage estimation of sample selection models subject to Tobit-type selection rules," Journal of Econometrics, Elsevier, vol. 61(2), pages 305-344, April.
    8. Berry, Steven & Levinsohn, James & Pakes, Ariel, 1995. "Automobile Prices in Market Equilibrium," Econometrica, Econometric Society, vol. 63(4), pages 841-890, July.
    9. Tauchen, George, 1985. "Diagnostic testing and evaluation of maximum likelihood models," Journal of Econometrics, Elsevier, vol. 30(1-2), pages 415-443.
    10. Gallant, A Ronald & Nychka, Douglas W, 1987. "Semi-nonparametric Maximum Likelihood Estimation," Econometrica, Econometric Society, vol. 55(2), pages 363-390, March.
    11. Powell, James L., 1984. "Least absolute deviations estimation for the censored regression model," Journal of Econometrics, Elsevier, vol. 25(3), pages 303-325, July.
    12. Fernandez, Luis, 1986. "Non-parametric maximum likelihood estimation of censored regression models," Journal of Econometrics, Elsevier, vol. 32(1), pages 35-57, June.
    13. Ichimura, H., 1991. "Semiparametric Least Squares (sls) and Weighted SLS Estimation of Single- Index Models," Papers 264, Minnesota - Center for Economic Research.
    14. Newey, Whitney K., 1986. "Linear instrumental variable estimation of limited dependent variable models with endogenous explanatory variables," Journal of Econometrics, Elsevier, vol. 32(1), pages 127-141, June.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ecm:wc2000:0651. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christopher F. Baum). General contact details of provider: http://edirc.repec.org/data/essssea.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.