IDEAS home Printed from
   My bibliography  Save this article

Randomly censored partially linear single-index models


  • Lu, Xuewen
  • Cheng, Tsung-Lin


This paper proposes a method for estimation of a class of partially linear single-index models with randomly censored samples. The method provides a flexible way for modelling the association between a response and a set of predictor variables when the response variable is randomly censored. It presents a technique for "dimension reduction" in semiparametric censored regression models and generalizes the existing accelerated failure-time models for survival analysis. The estimation procedure involves three stages: first, transform the censored data into synthetic data or pseudo-responses unbiasedly; second, obtain quasi-likelihood estimates of the regression coefficients in both linear and single-index components by an iteratively algorithm; finally, estimate the unknown nonparametric regression function using techniques for univariate censored nonparametric regression. The estimators for the regression coefficients are shown to be jointly root-n consistent and asymptotically normal. In addition, the estimator for the unknown regression function is a local linear kernel regression estimator and can be estimated with the same efficiency as all the parameters are known. Monte Carlo simulations are conducted to illustrate the proposed methodology.

Suggested Citation

  • Lu, Xuewen & Cheng, Tsung-Lin, 2007. "Randomly censored partially linear single-index models," Journal of Multivariate Analysis, Elsevier, vol. 98(10), pages 1895-1922, November.
  • Handle: RePEc:eee:jmvana:v:98:y:2007:i:10:p:1895-1922

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Arthur Lewbel & Oliver Linton, 2002. "Nonparametric Censored and Truncated Regression," Econometrica, Econometric Society, vol. 70(2), pages 765-779, March.
    2. Arthur Lewbel, 1998. "Semiparametric Latent Variable Model Estimation with Endogenous or Mismeasured Regressors," Econometrica, Econometric Society, vol. 66(1), pages 105-122, January.
    3. Duncan, Gregory M., 1986. "A semi-parametric censored regression estimator," Journal of Econometrics, Elsevier, vol. 32(1), pages 5-34, June.
    4. Lai, T. L. & Ying, Z. L. & Zheng, Z. K., 1995. "Asymptotic Normality of a Class of Adaptive Statistics with Applications to Synthetic Data Methods for Censored Regression," Journal of Multivariate Analysis, Elsevier, vol. 52(2), pages 259-279, February.
    5. Moshe Buchinsky & Jinyong Hahn, 1998. "An Alternative Estimator for the Censored Quantile Regression Model," Econometrica, Econometric Society, vol. 66(3), pages 653-672, May.
    6. G rgens, Tue, 2004. "Average Derivatives For Hazard Functions," Econometric Theory, Cambridge University Press, vol. 20(03), pages 437-463, June.
    7. Srinivasan, C. & Zhou, M., 1994. "Linear Regression with Censoring," Journal of Multivariate Analysis, Elsevier, vol. 49(2), pages 179-201, May.
    8. Powell, James L., 1986. "Censored regression quantiles," Journal of Econometrics, Elsevier, vol. 32(1), pages 143-155, June.
    9. Powell, James L & Stock, James H & Stoker, Thomas M, 1989. "Semiparametric Estimation of Index Coefficients," Econometrica, Econometric Society, vol. 57(6), pages 1403-1430, November.
    10. Xia, Yingcun & Härdle, Wolfgang, 2006. "Semi-parametric estimation of partially linear single-index models," Journal of Multivariate Analysis, Elsevier, vol. 97(5), pages 1162-1184, May.
    11. Newey, Whitney K & Stoker, Thomas M, 1993. "Efficiency of Weighted Average Derivative Estimators and Index Models," Econometrica, Econometric Society, vol. 61(5), pages 1199-1223, September.
    12. Songnian Chen & Gordon B. Dahl & Shakeeb Khan, 2005. "Nonparametric Identification and Estimation of a Censored Location-Scale Regression Model," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 212-221, March.
    13. Lu, Xuewen & Burke, M.D., 2005. "Censored multiple regression by the method of average derivatives," Journal of Multivariate Analysis, Elsevier, vol. 95(1), pages 182-205, July.
    14. Fernandez, Luis, 1986. "Non-parametric maximum likelihood estimation of censored regression models," Journal of Econometrics, Elsevier, vol. 32(1), pages 35-57, June.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Shim, Jooyong & Hwang, Changha, 2009. "Support vector censored quantile regression under random censoring," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 912-919, February.
    2. Wang, Xiaoguang & Shi, Xinyong, 2014. "Robust estimation for survival partially linear single-index models," Computational Statistics & Data Analysis, Elsevier, vol. 80(C), pages 140-152.
    3. Huang, Zhensheng & Pang, Zhen, 2012. "Corrected empirical likelihood inference for right-censored partially linear single-index model," Journal of Multivariate Analysis, Elsevier, vol. 105(1), pages 276-284.
    4. Strzalkowska-Kominiak, Ewa & Cao, Ricardo, 2013. "Maximum likelihood estimation for conditional distribution single-index models under censoring," Journal of Multivariate Analysis, Elsevier, vol. 114(C), pages 74-98.
    5. Kong, Efang & Linton, Oliver & Xia, Yingcun, 2013. "Global Bahadur Representation For Nonparametric Censored Regression Quantiles And Its Applications," Econometric Theory, Cambridge University Press, vol. 29(05), pages 941-968, October.
    6. Zhensheng Huang, 2012. "Empirical likelihood for varying-coefficient single-index model with right-censored data," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 75(1), pages 55-71, January.
    7. Zhao, Weihua & Lian, Heng & Zhang, Riquan & Lai, Peng, 2016. "Estimation and variable selection for proportional response data with partially linear single-index models," Computational Statistics & Data Analysis, Elsevier, vol. 96(C), pages 40-56.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:98:y:2007:i:10:p:1895-1922. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.