IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v98y2007i8p1558-1582.html
   My bibliography  Save this article

Location estimation in nonparametric regression with censored data

Author

Listed:
  • Heuchenne, Cédric
  • Van Keilegom, Ingrid

Abstract

Consider the heteroscedastic model Y=m(X)+[sigma](X)[var epsilon], where [var epsilon] and X are independent, Y is subject to right censoring, m(·) is an unknown but smooth location function (like e.g. conditional mean, median, trimmed mean...) and [sigma](·) an unknown but smooth scale function. In this paper we consider the estimation of m(·) under this model. The estimator we propose is a Nadaraya-Watson type estimator, for which the censored observations are replaced by 'synthetic' data points estimated under the above model. The estimator offers an alternative for the completely nonparametric estimator of m(·), which cannot be estimated consistently in a completely nonparametric way, whenever high quantiles of the conditional distribution of Y given X=x are involved. We obtain the asymptotic properties of the proposed estimator of m(x) and study its finite sample behaviour in a simulation study. The method is also applied to a study of quasars in astronomy.

Suggested Citation

  • Heuchenne, Cédric & Van Keilegom, Ingrid, 2007. "Location estimation in nonparametric regression with censored data," Journal of Multivariate Analysis, Elsevier, vol. 98(8), pages 1558-1582, September.
  • Handle: RePEc:eee:jmvana:v:98:y:2007:i:8:p:1558-1582
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(07)00042-5
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ingrid Van Keilegom & Noël Veraverbeke, 1997. "Estimation and Bootstrap with Censored Data in Fixed Design Nonparametric Regression," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 49(3), pages 467-491, September.
    2. Powell, James L., 1986. "Censored regression quantiles," Journal of Econometrics, Elsevier, vol. 32(1), pages 143-155, June.
    3. Cédric Heuchenne & Ingrid Keilegom, 2007. "Polynomial Regression with Censored Data based on Preliminary Nonparametric Estimation," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 59(2), pages 273-297, June.
    4. Moshe Buchinsky & Jinyong Hahn, 1998. "An Alternative Estimator for the Censored Quantile Regression Model," Econometrica, Econometric Society, vol. 66(3), pages 653-672, May.
    5. Songnian Chen & Gordon B. Dahl & Shakeeb Khan, 2005. "Nonparametric Identification and Estimation of a Censored Location-Scale Regression Model," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 212-221, March.
    6. Gang Li & Somnath Datta, 2001. "A Bootstrap Approach to Nonparametric Regression for Right Censored Data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 53(4), pages 708-729, December.
    Full references (including those not matched with items on IDEAS)

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:98:y:2007:i:8:p:1558-1582. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.