IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v105y2012i1p368-379.html
   My bibliography  Save this article

Self-consistent estimation of censored quantile regression

Author

Listed:
  • Peng, Limin

Abstract

The principle of self-consistency has been employed to estimate regression quantile with randomly censored response. The asymptotic studies for this type of approach was established only recently, partly due to the complex forms of the current self-consistent estimators of censored regression quantiles. Of interest, how the self-consistent estimation of censored regression quantiles is connected to the alternative martingale-based approach still remains uncovered. In this paper, we propose a new formulation of self-consistent censored regression quantiles based on stochastic integral equations. The proposed representation of censored regression quantiles entails a clearly defined estimation procedure. More importantly, it greatly simplifies the theoretical investigations. We establish the large sample equivalence between the proposed self-consistent estimators and the existing estimator derived from martingale-based estimating equations. The connection between the new self-consistent estimation approach and the available self-consistent algorithms is also elaborated.

Suggested Citation

  • Peng, Limin, 2012. "Self-consistent estimation of censored quantile regression," Journal of Multivariate Analysis, Elsevier, vol. 105(1), pages 368-379.
  • Handle: RePEc:eee:jmvana:v:105:y:2012:i:1:p:368-379
    DOI: 10.1016/j.jmva.2011.10.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X11002004
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2011.10.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Huixia Judy & Wang, Lan, 2009. "Locally Weighted Censored Quantile Regression," Journal of the American Statistical Association, American Statistical Association, vol. 104(487), pages 1117-1128.
    2. Neocleous, Tereza & Portnoy, Stephen, 2008. "On monotonicity of regression quantile functions," Statistics & Probability Letters, Elsevier, vol. 78(10), pages 1226-1229, August.
    3. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    4. Powell, James L., 1986. "Censored regression quantiles," Journal of Econometrics, Elsevier, vol. 32(1), pages 143-155, June.
    5. Moshe Buchinsky & Jinyong Hahn, 1998. "An Alternative Estimator for the Censored Quantile Regression Model," Econometrica, Econometric Society, vol. 66(3), pages 653-672, May.
    6. Honore, Bo & Khan, Shakeeb & Powell, James L., 2002. "Quantile regression under random censoring," Journal of Econometrics, Elsevier, vol. 109(1), pages 67-105, July.
    7. Powell, James L., 1984. "Least absolute deviations estimation for the censored regression model," Journal of Econometrics, Elsevier, vol. 25(3), pages 303-325, July.
    8. Portnoy S., 2003. "Censored Regression Quantiles," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 1001-1012, January.
    9. Peng, Limin & Huang, Yijian, 2008. "Survival Analysis With Quantile Regression Models," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 637-649, June.
    10. Stephen Portnoy & Guixian Lin, 2010. "Asymptotics for censored regression quantiles," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 22(1), pages 115-130.
    11. Koenker, Roger, 2008. "Censored Quantile Regression Redux," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 27(i06).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Joao M.C. Santos Silva & Rainer Winkelmann, 2024. "MisspecifiÂ…ed Exponential Regressions: Estimation, Interpretation, and Average Marginal Effects," School of Economics Discussion Papers 0124, School of Economics, University of Surrey.
    2. Bo Wei & Limin Peng & Mei‐Jie Zhang & Jason P. Fine, 2021. "Estimation of causal quantile effects with a binary instrumental variable and censored data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(3), pages 559-578, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Songnian, 2018. "Sequential estimation of censored quantile regression models," Journal of Econometrics, Elsevier, vol. 207(1), pages 30-52.
    2. Pang, Lei & Lu, Wenbin & Wang, Huixia Judy, 2012. "Variance estimation in censored quantile regression via induced smoothing," Computational Statistics & Data Analysis, Elsevier, vol. 56(4), pages 785-796.
    3. Fan, Yanqin & Liu, Ruixuan, 2018. "Partial identification and inference in censored quantile regression," Journal of Econometrics, Elsevier, vol. 206(1), pages 1-38.
    4. Jiang, Rong & Qian, Weimin & Zhou, Zhangong, 2012. "Variable selection and coefficient estimation via composite quantile regression with randomly censored data," Statistics & Probability Letters, Elsevier, vol. 82(2), pages 308-317.
    5. Lin, Guixian & He, Xuming & Portnoy, Stephen, 2012. "Quantile regression with doubly censored data," Computational Statistics & Data Analysis, Elsevier, vol. 56(4), pages 797-812.
    6. Xiaofeng Lv & Gupeng Zhang & Xinkuo Xu & Qinghai Li, 2019. "Weighted quantile regression for censored data with application to export duration data," Statistical Papers, Springer, vol. 60(4), pages 1161-1192, August.
    7. Jad Beyhum & Lorenzo Tedesco & Ingrid Van Keilegom, 2022. "Instrumental variable quantile regression under random right censoring," Papers 2209.01429, arXiv.org, revised Feb 2023.
    8. Akram Yazdani & Hojjat Zeraati & Mehdi Yaseri & Shahpar Haghighat & Ahmad Kaviani, 2022. "Laplace regression with clustered censored data," Computational Statistics, Springer, vol. 37(3), pages 1041-1068, July.
    9. Jung-Yu Cheng & Shinn-Jia Tzeng, 2014. "Quantile regression of right-censored length-biased data using the Buckley–James-type method," Computational Statistics, Springer, vol. 29(6), pages 1571-1592, December.
    10. Shuang Ji & Limin Peng & Yu Cheng & HuiChuan Lai, 2012. "Quantile Regression for Doubly Censored Data," Biometrics, The International Biometric Society, vol. 68(1), pages 101-112, March.
    11. Li, Tong & Oka, Tatsushi, 2015. "Set identification of the censored quantile regression model for short panels with fixed effects," Journal of Econometrics, Elsevier, vol. 188(2), pages 363-377.
    12. Xie, Shangyu & Wan, Alan T.K. & Zhou, Yong, 2015. "Quantile regression methods with varying-coefficient models for censored data," Computational Statistics & Data Analysis, Elsevier, vol. 88(C), pages 154-172.
    13. Rima Rajab & Milan Dražić & Nenad Mladenović & Pavle Mladenović & Keming Yu, 2015. "Fitting censored quantile regression by variable neighborhood search," Journal of Global Optimization, Springer, vol. 63(3), pages 481-500, November.
    14. De Backer, Mickael & El Ghouch, Anouar & Van Keilegom, Ingrid, 2017. "An Adapted Loss Function for Censored Quantile Regression," LIDAM Discussion Papers ISBA 2017003, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    15. Xiaoyan Sun & Limin Peng & Yijian Huang & HuiChuan J. Lai, 2016. "Generalizing Quantile Regression for Counting Processes With Applications to Recurrent Events," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(513), pages 145-156, March.
    16. Xianghua Luo & Chiung-Yu Huang & Lan Wang, 2013. "Quantile Regression for Recurrent Gap Time Data," Biometrics, The International Biometric Society, vol. 69(2), pages 375-385, June.
    17. Bilias, Yannis & Florios, Kostas & Skouras, Spyros, 2019. "Exact computation of Censored Least Absolute Deviations estimator," Journal of Econometrics, Elsevier, vol. 212(2), pages 584-606.
    18. Fitzenberger, Bernd & Winker, Peter, 2007. "Improving the computation of censored quantile regressions," Computational Statistics & Data Analysis, Elsevier, vol. 52(1), pages 88-108, September.
    19. Kyu Hyun Kim & Daniel J. Caplan & Sangwook Kang, 2023. "Smoothed quantile regression for censored residual life," Computational Statistics, Springer, vol. 38(2), pages 1001-1022, June.
    20. P. Čížek & S. Sadikoglu, 2018. "Bias-corrected quantile regression estimation of censored regression models," Statistical Papers, Springer, vol. 59(1), pages 215-247, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:105:y:2012:i:1:p:368-379. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.