IDEAS home Printed from
   My bibliography  Save this article

Variance estimation in censored quantile regression via induced smoothing


  • Pang, Lei
  • Lu, Wenbin
  • Wang, Huixia Judy


Statistical inference in censored quantile regression is challenging, partly due to the unsmoothness of the quantile score function. A new procedure is developed to estimate the variance of the Bang and Tsiatis inverse-censoring-probability weighted estimator for censored quantile regression by employing the idea of induced smoothing. The proposed variance estimator is shown to be asymptotically consistent. In addition, a numerical study suggests that the proposed procedure performs well in finite samples, and it is computationally more efficient than the commonly used bootstrap method.

Suggested Citation

  • Pang, Lei & Lu, Wenbin & Wang, Huixia Judy, 2012. "Variance estimation in censored quantile regression via induced smoothing," Computational Statistics & Data Analysis, Elsevier, vol. 56(4), pages 785-796.
  • Handle: RePEc:eee:csdana:v:56:y:2012:i:4:p:785-796 DOI: 10.1016/j.csda.2010.10.018

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Wang, Huixia Judy & Wang, Lan, 2009. "Locally Weighted Censored Quantile Regression," Journal of the American Statistical Association, American Statistical Association, vol. 104(487), pages 1117-1128.
    2. Whang, Yoon-Jae, 2006. "Smoothed Empirical Likelihood Methods For Quantile Regression Models," Econometric Theory, Cambridge University Press, vol. 22(02), pages 173-205, April.
    3. Honore, Bo & Khan, Shakeeb & Powell, James L., 2002. "Quantile regression under random censoring," Journal of Econometrics, Elsevier, vol. 109(1), pages 67-105, July.
    4. Powell, James L., 1984. "Least absolute deviations estimation for the censored regression model," Journal of Econometrics, Elsevier, vol. 25(3), pages 303-325, July.
    5. Peng, Limin & Huang, Yijian, 2008. "Survival Analysis With Quantile Regression Models," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 637-649, June.
    6. B. M. Brown & You-Gan Wang, 2005. "Standard errors and covariance matrices for smoothed rank estimators," Biometrika, Biometrika Trust, vol. 92(1), pages 149-158, March.
    7. Joel L. Horowitz, 1998. "Bootstrap Methods for Covariance Structures," Journal of Human Resources, University of Wisconsin Press, vol. 33(1), pages 39-61.
    8. Lynn M. Johnson & Robert L. Strawderman, 2009. "Induced smoothing for the semiparametric accelerated failure time model: asymptotics and extensions to clustered data," Biometrika, Biometrika Trust, vol. 96(3), pages 577-590.
    9. Fu, Liya & Wang, You-Gan & Bai, Zhidong, 2010. "Rank regression for analysis of clustered data: A natural induced smoothing approach," Computational Statistics & Data Analysis, Elsevier, vol. 54(4), pages 1036-1050, April.
    10. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    11. Powell, James L., 1986. "Censored regression quantiles," Journal of Econometrics, Elsevier, vol. 32(1), pages 143-155, June.
    12. Wang, You-Gan & Shao, Quanxi & Zhu, Min, 2009. "Quantile regression without the curse of unsmoothness," Computational Statistics & Data Analysis, Elsevier, vol. 53(10), pages 3696-3705, August.
    13. Heller, Glenn, 2007. "Smoothed Rank Regression With Censored Data," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 552-559, June.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Tang, Yanlin & Song, Xinyuan & Zhu, Zhongyi, 2015. "Threshold effect test in censored quantile regression," Statistics & Probability Letters, Elsevier, vol. 105(C), pages 149-156.
    2. repec:eee:csdana:v:56:y:2012:i:12:p:4312-4319 is not listed on IDEAS
    3. repec:bla:jorssb:v:79:y:2017:i:5:p:1565-1582 is not listed on IDEAS
    4. repec:spr:metrik:v:80:y:2017:i:5:d:10.1007_s00184-017-0616-1 is not listed on IDEAS


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:56:y:2012:i:4:p:785-796. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.