IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v53y2009i10p3696-3705.html
   My bibliography  Save this article

Quantile regression without the curse of unsmoothness

Author

Listed:
  • Wang, You-Gan
  • Shao, Quanxi
  • Zhu, Min

Abstract

We consider quantile regression models and investigate the induced smoothing method for obtaining the covariance matrix of the regression parameter estimates. We show that the difference between the smoothed and unsmoothed estimating functions in quantile regression is negligible. The detailed and simple computational algorithms for calculating the asymptotic covariance are provided. Intensive simulation studies indicate that the proposed method performs very well. We also illustrate the algorithm by analyzing the rainfall-runoff data from Murray Upland, Australia.

Suggested Citation

  • Wang, You-Gan & Shao, Quanxi & Zhu, Min, 2009. "Quantile regression without the curse of unsmoothness," Computational Statistics & Data Analysis, Elsevier, vol. 53(10), pages 3696-3705, August.
  • Handle: RePEc:eee:csdana:v:53:y:2009:i:10:p:3696-3705
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(09)00122-4
    Download Restriction: Full text for ScienceDirect subscribers only.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. He X. & Hu F., 2002. "Markov Chain Marginal Bootstrap," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 783-795, September.
    2. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    3. Koenker, Roger & Bassett, Gilbert, Jr, 1982. "Robust Tests for Heteroscedasticity Based on Regression Quantiles," Econometrica, Econometric Society, vol. 50(1), pages 43-61, January.
    4. Koenker,Roger, 2005. "Quantile Regression," Cambridge Books, Cambridge University Press, number 9780521845731, April.
    5. Yvonne H. S. Ho & Stephen M. S. Lee, 2005. "Calibrated interpolated confidence intervals for population quantiles," Biometrika, Biometrika Trust, vol. 92(1), pages 234-241, March.
    6. B. M. Brown & You-Gan Wang, 2005. "Standard errors and covariance matrices for smoothed rank estimators," Biometrika, Biometrika Trust, vol. 92(1), pages 149-158, March.
    7. White, Halbert, 1982. "Maximum Likelihood Estimation of Misspecified Models," Econometrica, Econometric Society, vol. 50(1), pages 1-25, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fernández-Ponce, J.M. & Pellerey, F. & Rodríguez-Griñolo, M.R., 2011. "On a new NBUE property in multivariate sense: An application," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3283-3294, December.
    2. Hong, Han & Mahajan, Aprajit & Nekipelov, Denis, 2015. "Extremum estimation and numerical derivatives," Journal of Econometrics, Elsevier, vol. 188(1), pages 250-263.
    3. Thompson, Paul & Cai, Yuzhi & Moyeed, Rana & Reeve, Dominic & Stander, Julian, 2010. "Bayesian nonparametric quantile regression using splines," Computational Statistics & Data Analysis, Elsevier, vol. 54(4), pages 1138-1150, April.
    4. Ruosha Li & Xuelin Huang & Jorge Cortes, 2016. "Quantile residual life regression with longitudinal biomarker measurements for dynamic prediction," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 65(5), pages 755-773, November.
    5. Zhu, Min, 2013. "Return distribution predictability and its implications for portfolio selection," International Review of Economics & Finance, Elsevier, vol. 27(C), pages 209-223.
    6. Wang, You-Gan & Fu, Liya, 2011. "Rank regression for accelerated failure time model with clustered and censored data," Computational Statistics & Data Analysis, Elsevier, vol. 55(7), pages 2334-2343, July.
    7. Pang, Lei & Lu, Wenbin & Wang, Huixia Judy, 2012. "Variance estimation in censored quantile regression via induced smoothing," Computational Statistics & Data Analysis, Elsevier, vol. 56(4), pages 785-796.
    8. Fu, Liya & Wang, You-Gan & Bai, Zhidong, 2010. "Rank regression for analysis of clustered data: A natural induced smoothing approach," Computational Statistics & Data Analysis, Elsevier, vol. 54(4), pages 1036-1050, April.
    9. Fu, Liya & Wang, You-Gan, 2012. "Quantile regression for longitudinal data with a working correlation model," Computational Statistics & Data Analysis, Elsevier, vol. 56(8), pages 2526-2538.
    10. Shuanghua Luo & Changlin Mei & Cheng-yi Zhang, 2017. "Smoothed empirical likelihood for quantile regression models with response data missing at random," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 101(1), pages 95-116, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:53:y:2009:i:10:p:3696-3705. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/csda .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.