IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article

Return distribution predictability and its implications for portfolio selection

  • Zhu, Min
Registered author(s):

    The inquiries to return predictability are traditionally limited to conditional mean, while literature on portfolio selection is replete with moment-based analysis with up to the fourth moment being considered. This paper develops a distribution-based framework for both return prediction and portfolio selection. More specifically, a time-varying return distribution is modeled through quantile regressions and copulas, using quantile regressions to extract information in marginal distributions and copulas to capture dependence structure. A preference function which captures higher moments is proposed for portfolio selection. An empirical application highlights the additional information provided by the distributional approach which cannot be captured by the traditional moment-based methods.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://www.sciencedirect.com/science/article/pii/S1059056012001190
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Elsevier in its journal International Review of Economics & Finance.

    Volume (Year): 27 (2013)
    Issue (Month): C ()
    Pages: 209-223

    as
    in new window

    Handle: RePEc:eee:reveco:v:27:y:2013:i:c:p:209-223
    Contact details of provider: Web page: http://www.elsevier.com/locate/inca/620165

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as in new window
    1. Nikolay Nenovsky & S. Statev, 2006. "Introduction," Post-Print halshs-00260898, HAL.
    2. Walter Briec & Kristiaan Kerstens & Octave Jokung, 2005. "Mean-Variance-Skewness Portfolio Performance Gauging: A General Shortage Function and Dual Approach," Working Papers 2005-ECO-05, IESEG School of Management.
    3. Massimo Guidolin & Allan Timmermann, 2008. "International asset allocation under regime switching, skew, and kurtosis preferences," Review of Financial Studies, Society for Financial Studies, vol. 21(2), pages 889-935, April.
    4. Marco Aiolfi & Carlos Capistrán & Allan Timmermann, 2010. "Forecast Combinations," CREATES Research Papers 2010-21, Department of Economics and Business Economics, Aarhus University.
    5. Chow, Edward H & Lee, Wayne Y & Solt, Michael E, 1997. "The Exchange-Rate Risk Exposure of Asset Returns," The Journal of Business, University of Chicago Press, vol. 70(1), pages 105-23, January.
    6. Javier Mencía & Enrique Sentana, 2009. "Multivariate location-scale mixtures of normals and mean-variance-skewness portfolio allocation," Working Papers 0909, Banco de España;Working Papers Homepage.
    7. David E. Rapach & Jack K. Strauss & Guofu Zhou, 2010. "Out-of-Sample Equity Premium Prediction: Combination Forecasts and Links to the Real Economy," Review of Financial Studies, Society for Financial Studies, vol. 23(2), pages 821-862, February.
    8. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    9. Inoue, Atsushi & Kilian, Lutz, 2002. "In-sample or out-of-sample tests of predictability: which one should we use?," Working Paper Series 0195, European Central Bank.
    10. M. Gilli & E. Kellezi & H. Hysi, 2006. "A Data-Driven Optimization Heuristic for Downside Risk Minimization," Computing in Economics and Finance 2006 355, Society for Computational Economics.
    11. Koenker, Roger & Bassett, Gilbert, Jr, 1982. "Robust Tests for Heteroscedasticity Based on Regression Quantiles," Econometrica, Econometric Society, vol. 50(1), pages 43-61, January.
    12. John H. Cochrane, 2006. "The Dog That Did Not Bark: A Defense of Return Predictability," NBER Working Papers 12026, National Bureau of Economic Research, Inc.
    13. de Athayde, Gustavo M. & Flores, Renato Jr., 2004. "Finding a maximum skewness portfolio--a general solution to three-moments portfolio choice," Journal of Economic Dynamics and Control, Elsevier, vol. 28(7), pages 1335-1352, April.
    14. Amos Tversky & Daniel Kahneman, 1979. "Prospect Theory: An Analysis of Decision under Risk," Levine's Working Paper Archive 7656, David K. Levine.
    15. Wang, You-Gan & Shao, Quanxi & Zhu, Min, 2009. "Quantile regression without the curse of unsmoothness," Computational Statistics & Data Analysis, Elsevier, vol. 53(10), pages 3696-3705, August.
    16. Thomas Q. Pedersen, 2010. "Predictable return distributions," CREATES Research Papers 2010-38, Department of Economics and Business Economics, Aarhus University.
    17. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, 03.
    18. Patrick L. Brockett & Yehuda Kahane, 1992. "Risk, Return, Skewness and Preference," Management Science, INFORMS, vol. 38(6), pages 851-866, June.
    19. Roger Koenker & Kevin F. Hallock, 2001. "Quantile Regression," Journal of Economic Perspectives, American Economic Association, vol. 15(4), pages 143-156, Fall.
    20. repec:sae:ecolab:v:16:y:2006:i:2:p:1-2 is not listed on IDEAS
    21. Kuan, Tsung-Han & Li, Chu-Shiu & Liu, Chwen-Chi, 2012. "Corporate governance and cash holdings: A quantile regression approach," International Review of Economics & Finance, Elsevier, vol. 24(C), pages 303-314.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:eee:reveco:v:27:y:2013:i:c:p:209-223. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.