IDEAS home Printed from https://ideas.repec.org/p/aah/create/2010-38.html
   My bibliography  Save this paper

Predictable return distributions

Author

Listed:
  • Thomas Q. Pedersen

    (School of Economics and Management, Aarhus University and CREATES)

Abstract

This paper provides detailed insights into predictability of the entire stock and bond return distribution through the use of quantile regression. This allows us to examine speci?c parts of the return distribution such as the tails or the center, and for a suf?ciently ?ne grid of quantiles we can trace out the entire distribution. A univariate quantile regression model is used to examine stock and bond return distributions individually, while a multivariate model is used to capture their joint distribution. An empirical analysis on US data shows that certain parts of the return distributions are predictable as a function of economic state variables. The results are, however, very different for stocks and bonds. The state variables primarily predict only location shifts in the stock return distribution, while they also predict changes in higher-order moments in the bond return distribution. Out-of-sample analyses show that the relative accuracy of the state variables in predicting future returns varies across the distribution. A portfolio study shows that an investor with power utility can obtain economic gains by applying the empirical return distribution in portfolio decisions instead of imposing an assumption of lognormally distributed returns.

Suggested Citation

  • Thomas Q. Pedersen, 2010. "Predictable return distributions," CREATES Research Papers 2010-38, Department of Economics and Business Economics, Aarhus University.
  • Handle: RePEc:aah:create:2010-38
    as

    Download full text from publisher

    File URL: https://repec.econ.au.dk/repec/creates/rp/10/rp10_38.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Marquering, Wessel & Verbeek, Marno, 2004. "The Economic Value of Predicting Stock Index Returns and Volatility," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 39(2), pages 407-429, June.
    2. Ivo Welch & Amit Goyal, 2008. "A Comprehensive Look at The Empirical Performance of Equity Premium Prediction," The Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1455-1508, July.
    3. Massimo Guidolin & Allan Timmermann, 2006. "An econometric model of nonlinear dynamics in the joint distribution of stock and bond returns," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(1), pages 1-22, January.
    4. Lieven Baele & Geert Bekaert & Koen Inghelbrecht, 2007. "The determinants of stock and bond return comovements," Working Paper Research 119, National Bank of Belgium.
    5. Michelle L. Barnes & Anthony W. Hughes, 2002. "A quantile regression analysis of the cross section of stock market returns," Working Papers 02-2, Federal Reserve Bank of Boston.
    6. Andrew J. Patton, 2004. "On the Out-of-Sample Importance of Skewness and Asymmetric Dependence for Asset Allocation," Journal of Financial Econometrics, Oxford University Press, vol. 2(1), pages 130-168.
    7. John Y. Campbell & Yeung Lewis Chanb & M. Viceira, 2013. "A multivariate model of strategic asset allocation," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part II, chapter 39, pages 809-848, World Scientific Publishing Co. Pte. Ltd..
    8. Koenker,Roger, 2005. "Quantile Regression," Cambridge Books, Cambridge University Press, number 9780521845731.
    9. Andrew Ang & Geert Bekaert, 2002. "International Asset Allocation With Regime Shifts," The Review of Financial Studies, Society for Financial Studies, vol. 15(4), pages 1137-1187.
    10. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    11. Guidolin, Massimo & Hyde, Stuart & McMillan, David & Ono, Sadayuki, 2009. "Non-linear predictability in stock and bond returns: When and where is it exploitable?," International Journal of Forecasting, Elsevier, vol. 25(2), pages 373-399.
    12. Valentina Corradi & Norman Swanson, 2006. "Predictive Density Evaluation. Revised," Departmental Working Papers 200621, Rutgers University, Department of Economics.
    13. Ilmanen, Antti, 1995. "Time-Varying Expected Returns in International Bond Markets," Journal of Finance, American Finance Association, vol. 50(2), pages 481-506, June.
    14. Charlotte Christiansen & Angelo Ranaldo, 2007. "Realized bond—stock correlation: Macroeconomic announcement effects," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 27(5), pages 439-469, May.
    15. De Gooijer J.G. & Zerom D., 2003. "On Additive Conditional Quantiles With High Dimensional Covariates," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 135-146, January.
    16. Robert F. Engle & Simone Manganelli, 2004. "CAViaR: Conditional Autoregressive Value at Risk by Regression Quantiles," Journal of Business & Economic Statistics, American Statistical Association, vol. 22, pages 367-381, October.
    17. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    18. John Y. Campbell & John Cochrane, 1999. "Force of Habit: A Consumption-Based Explanation of Aggregate Stock Market Behavior," Journal of Political Economy, University of Chicago Press, vol. 107(2), pages 205-251, April.
    19. Mark E. Wohar & David E. Rapach, 2005. "Valuation ratios and long-horizon stock price predictability," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(3), pages 327-344.
    20. Koenker, Roger & Bassett, Gilbert, Jr, 1982. "Robust Tests for Heteroscedasticity Based on Regression Quantiles," Econometrica, Econometric Society, vol. 50(1), pages 43-61, January.
    21. Engsted, Tom & Pedersen, Thomas Q., 2012. "Return predictability and intertemporal asset allocation: Evidence from a bias-adjusted VAR model," Journal of Empirical Finance, Elsevier, vol. 19(2), pages 241-253.
    22. Corradi, Valentina & Swanson, Norman R., 2006. "Predictive Density Evaluation," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 5, pages 197-284, Elsevier.
    23. William F. Sharpe, 1964. "Capital Asset Prices: A Theory Of Market Equilibrium Under Conditions Of Risk," Journal of Finance, American Finance Association, vol. 19(3), pages 425-442, September.
    24. Campbell R. Harvey & Akhtar Siddique, 2000. "Conditional Skewness in Asset Pricing Tests," Journal of Finance, American Finance Association, vol. 55(3), pages 1263-1295, June.
    25. Guidolin, Massimo & Timmermann, Allan, 2007. "Asset allocation under multivariate regime switching," Journal of Economic Dynamics and Control, Elsevier, vol. 31(11), pages 3503-3544, November.
    26. Koenker, Roger & Park, Beum J., 1996. "An interior point algorithm for nonlinear quantile regression," Journal of Econometrics, Elsevier, vol. 71(1-2), pages 265-283.
    27. Robert F. Dittmar, 2002. "Nonlinear Pricing Kernels, Kurtosis Preference, and Evidence from the Cross Section of Equity Returns," Journal of Finance, American Finance Association, vol. 57(1), pages 369-403, February.
    28. Campbell, John Y. & Viceira, Luis M., 2002. "Strategic Asset Allocation: Portfolio Choice for Long-Term Investors," OUP Catalogue, Oxford University Press, number 9780198296942.
    29. Gilbert W. Bassett Jr. & Hsiu-Lang Chen, 2001. "Portfolio style: Return-based attribution using quantile regression," Empirical Economics, Springer, vol. 26(1), pages 293-305.
    30. Kirby, Chris, 1997. "Measuring the Predictable Variation in Stock and Bond Returns," The Review of Financial Studies, Society for Financial Studies, vol. 10(3), pages 579-630.
    31. Lieven Baele, 2010. "The Determinants of Stock and Bond Return Comovements," The Review of Financial Studies, Society for Financial Studies, vol. 23(6), pages 2374-2428, June.
    32. Buchinsky, Moshe, 1995. "Estimating the asymptotic covariance matrix for quantile regression models a Monte Carlo study," Journal of Econometrics, Elsevier, vol. 68(2), pages 303-338, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Demirer, Riza & Pierdzioch, Christian & Zhang, Huacheng, 2017. "On the short-term predictability of stock returns: A quantile boosting approach," Finance Research Letters, Elsevier, vol. 22(C), pages 35-41.
    2. Aslanidis, Nektarios & Christiansen, Charlotte, 2014. "Quantiles of the realized stock–bond correlation and links to the macroeconomy," Journal of Empirical Finance, Elsevier, vol. 28(C), pages 321-331.
    3. Kaihua Deng, 2015. "Predicting By Learning: An Adaptive Rationale," Annals of Financial Economics (AFE), World Scientific Publishing Co. Pte. Ltd., vol. 10(02), pages 1-14, December.
    4. Donald Lien & Ziling Wang & Xiaojian Yu, 2021. "Quantile information share under Markov regime‐switching," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(4), pages 493-513, April.
    5. Anatolyev, Stanislav & Baruník, Jozef, 2019. "Forecasting dynamic return distributions based on ordered binary choice," International Journal of Forecasting, Elsevier, vol. 35(3), pages 823-835.
    6. Zhu, Min, 2013. "Return distribution predictability and its implications for portfolio selection," International Review of Economics & Finance, Elsevier, vol. 27(C), pages 209-223.
    7. Reber, Beat, 2017. "Does mispricing, liquidity or third-party certification contribute to IPO downside risk?," International Review of Financial Analysis, Elsevier, vol. 51(C), pages 25-53.
    8. Dimitrios Koutmos, 2023. "Investor sentiment and bitcoin prices," Review of Quantitative Finance and Accounting, Springer, vol. 60(1), pages 1-29, January.
    9. Alexander, Carol & Han, Yang & Meng, Xiaochun, 2023. "Static and dynamic models for multivariate distribution forecasts: Proper scoring rule tests of factor-quantile versus multivariate GARCH models," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1078-1096.
    10. Baumann, Ursel & Darracq Pariès, Matthieu & Westermann, Thomas & Riggi, Marianna & Bobeica, Elena & Meyler, Aidan & Böninghausen, Benjamin & Fritzer, Friedrich & Trezzi, Riccardo & Jonckheere, Jana & , 2021. "Inflation expectations and their role in Eurosystem forecasting," Occasional Paper Series 264, European Central Bank.
    11. Pierdzioch, Christian & Risse, Marian & Rohloff, Sebastian, 2015. "A real-time quantile-regression approach to forecasting gold returns under asymmetric loss," Resources Policy, Elsevier, vol. 45(C), pages 299-306.
    12. Gebka, Bartosz & Wohar, Mark E., 2018. "The predictive power of the yield spread for future economic expansions: Evidence from a new approach," Economic Modelling, Elsevier, vol. 75(C), pages 181-195.
    13. Duc Huynh, Toan Luu & Burggraf, Tobias & Wang, Mei, 2020. "Gold, platinum, and expected Bitcoin returns," Journal of Multinational Financial Management, Elsevier, vol. 56(C).
    14. Naeem, Muhammad Abubakr & Mbarki, Imen & Shahzad, Syed Jawad Hussain, 2021. "Predictive role of online investor sentiment for cryptocurrency market: Evidence from happiness and fears," International Review of Economics & Finance, Elsevier, vol. 73(C), pages 496-514.
    15. Pierdzioch, Christian & Risse, Marian & Rohloff, Sebastian, 2016. "A quantile-boosting approach to forecasting gold returns," The North American Journal of Economics and Finance, Elsevier, vol. 35(C), pages 38-55.
    16. Donald Lien & Zijun Wang, 2019. "Quantile information share," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 39(1), pages 38-55, January.
    17. Alexandridis, Antonios K. & Apergis, Iraklis & Panopoulou, Ekaterini & Voukelatos, Nikolaos, 2023. "Equity premium prediction: The role of information from the options market," Journal of Financial Markets, Elsevier, vol. 64(C).
    18. Shamsi Zamenjani, Azam, 2021. "Do financial variables help predict the conditional distribution of the market portfolio?," Journal of Empirical Finance, Elsevier, vol. 62(C), pages 327-345.
    19. Gebka, Bartosz & Wohar, Mark E., 2019. "Stock return distribution and predictability: Evidence from over a century of daily data on the DJIA index," International Review of Economics & Finance, Elsevier, vol. 60(C), pages 1-25.
    20. De Gooijer Jan G. & Zerom Dawit, 2020. "Penalized Averaging of Parametric and Non-Parametric Quantile Forecasts," Journal of Time Series Econometrics, De Gruyter, vol. 12(1), pages 1-15, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rapach, David & Zhou, Guofu, 2013. "Forecasting Stock Returns," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 328-383, Elsevier.
    2. Anandadeep Mandal & Sunil S. Poshakwale & Gabriel J. Power, 2021. "Do investors gain from forecasting the asymmetric return co‐movements of financial and real assets?," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(3), pages 3246-3268, July.
    3. Massimo Guidolin, 2011. "Markov Switching Models in Empirical Finance," Advances in Econometrics, in: Missing Data Methods: Time-Series Methods and Applications, pages 1-86, Emerald Group Publishing Limited.
    4. Campbell, John Y. & Sunderam, Adi & Viceira, Luis M., 2017. "Inflation Bets or Deflation Hedges? The Changing Risks of Nominal Bonds," Critical Finance Review, now publishers, vol. 6(2), pages 263-301, September.
    5. Aslanidis, Nektarios & Christiansen, Charlotte, 2014. "Quantiles of the realized stock–bond correlation and links to the macroeconomy," Journal of Empirical Finance, Elsevier, vol. 28(C), pages 321-331.
    6. Guidolin, Massimo & Hyde, Stuart, 2012. "Can VAR models capture regime shifts in asset returns? A long-horizon strategic asset allocation perspective," Journal of Banking & Finance, Elsevier, vol. 36(3), pages 695-716.
    7. Nguyen, Hoang & Javed, Farrukh, 2023. "Dynamic relationship between Stock and Bond returns: A GAS MIDAS copula approach," Journal of Empirical Finance, Elsevier, vol. 73(C), pages 272-292.
    8. Rossi, Barbara, 2013. "Advances in Forecasting under Instability," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1203-1324, Elsevier.
    9. Stijn Claessens & M Ayhan Kose, 2018. "Frontiers of macrofinancial linkages," BIS Papers, Bank for International Settlements, number 95.
    10. Stijn Claessens & M. Ayhan Kose, 2017. "Asset prices and macroeconomic outcomes: A survey," CAMA Working Papers 2017-76, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    11. Erik Kole & Dick Dijk, 2017. "How to Identify and Forecast Bull and Bear Markets?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(1), pages 120-139, January.
    12. Poshakwale, Sunil S. & Mandal, Anandadeep, 2016. "Determinants of asymmetric return comovements of gold and other financial assets," International Review of Financial Analysis, Elsevier, vol. 47(C), pages 229-242.
    13. Komunjer, Ivana, 2013. "Quantile Prediction," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 961-994, Elsevier.
    14. Gaglianone, Wagner Piazza & Marins, Jaqueline Terra Moura, 2017. "Evaluation of exchange rate point and density forecasts: An application to Brazil," International Journal of Forecasting, Elsevier, vol. 33(3), pages 707-728.
    15. Meligkotsidou, Loukia & Vrontos, Ioannis D. & Vrontos, Spyridon D., 2009. "Quantile regression analysis of hedge fund strategies," Journal of Empirical Finance, Elsevier, vol. 16(2), pages 264-279, March.
    16. Gloria González-Rivera & Tae-Hwy Lee, 2007. "Nonlinear Time Series in Financial Forecasting," Working Papers 200803, University of California at Riverside, Department of Economics, revised Feb 2008.
    17. Dahlquist, Magnus & Tédongap, Roméo & Farago, Adam, 2015. "Asymmetries and Portfolio Choice," CEPR Discussion Papers 10706, C.E.P.R. Discussion Papers.
    18. Gaglianone, Wagner Piazza & Guillén, Osmani Teixeira de Carvalho & Figueiredo, Francisco Marcos Rodrigues, 2018. "Estimating inflation persistence by quantile autoregression with quantile-specific unit roots," Economic Modelling, Elsevier, vol. 73(C), pages 407-430.
    19. Nowotarski, Jakub & Weron, Rafał, 2018. "Recent advances in electricity price forecasting: A review of probabilistic forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1548-1568.
    20. Scholz, Michael & Sperlich, Stefan & Nielsen, Jens Perch, 2016. "Nonparametric long term prediction of stock returns with generated bond yields," Insurance: Mathematics and Economics, Elsevier, vol. 69(C), pages 82-96.

    More about this item

    Keywords

    Return predictability; return distribution; quantile regression; multivariate model; out-of-sample forecast; portfolio choice;
    All these keywords.

    JEL classification:

    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
    • C31 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models; Quantile Regressions; Social Interaction Models
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aah:create:2010-38. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: http://www.econ.au.dk/afn/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.