IDEAS home Printed from https://ideas.repec.org/a/eee/empfin/v73y2023icp272-292.html
   My bibliography  Save this article

Dynamic relationship between Stock and Bond returns: A GAS MIDAS copula approach

Author

Listed:
  • Nguyen, Hoang
  • Javed, Farrukh

Abstract

Stock and bond are the two most crucial assets for portfolio allocation and risk management. This study proposes generalized autoregressive score mixed frequency data sampling (GAS MIDAS) copula models to analyze the dynamic dependence between stock returns and bond returns. A GAS MIDAS copula decomposes their relationship into a short-term dependence and a long-term dependence. While the long-term dependence is driven by related macro-finance factors using a MIDAS regression, the short-term effect follows a GAS process. Asymmetric dependence at different quantiles is also taken into account. We find that the proposed GAS MIDAS copula models are more effective in optimal portfolio allocation and improve the accuracy in risk management compared to other alternatives.

Suggested Citation

  • Nguyen, Hoang & Javed, Farrukh, 2023. "Dynamic relationship between Stock and Bond returns: A GAS MIDAS copula approach," Journal of Empirical Finance, Elsevier, vol. 73(C), pages 272-292.
  • Handle: RePEc:eee:empfin:v:73:y:2023:i:c:p:272-292
    DOI: 10.1016/j.jempfin.2023.07.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0927539823000695
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jempfin.2023.07.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. F. Blasques & S. J. Koopman & A. Lucas, 2015. "Information-theoretic optimality of observation-driven time series models for continuous responses," Biometrika, Biometrika Trust, vol. 102(2), pages 325-343.
    2. Natalia Nolde & Johanna F. Ziegel, 2016. "Elicitability and backtesting: Perspectives for banking regulation," Papers 1608.05498, arXiv.org, revised Feb 2017.
    3. Campbell, John Y & Ammer, John, 1993. "What Moves the Stock and Bond Markets? A Variance Decomposition for Long-Term Asset Returns," Journal of Finance, American Finance Association, vol. 48(1), pages 3-37, March.
    4. repec:oup:rfinst:v:25:y::i:12:p:3711-3751 is not listed on IDEAS
    5. Gneiting, Tilmann, 2011. "Making and Evaluating Point Forecasts," Journal of the American Statistical Association, American Statistical Association, vol. 106(494), pages 746-762.
    6. Nguyen, Hoang & Virbickaitė, Audronė, 2023. "Modeling stock-oil co-dependence with Dynamic Stochastic MIDAS Copula models," Energy Economics, Elsevier, vol. 124(C).
    7. Christian Genest & Johanna Nešlehová & Noomen Ben Ghorbal, 2010. "Spearman's footrule and Gini's gamma: a review with complements," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 22(8), pages 937-954.
    8. Harvey,Andrew C., 2013. "Dynamic Models for Volatility and Heavy Tails," Cambridge Books, Cambridge University Press, number 9781107630024.
    9. Siem Jan Koopman & André Lucas & Marcel Scharth, 2016. "Predicting Time-Varying Parameters with Parameter-Driven and Observation-Driven Models," The Review of Economics and Statistics, MIT Press, vol. 98(1), pages 97-110, March.
    10. Hossein Asgharian & Charlotte Christiansen & Ai Jun Hou, 2016. "Macro-Finance Determinants of the Long-Run Stock–Bond Correlation: The DCC-MIDAS Specification," Journal of Financial Econometrics, Oxford University Press, vol. 14(3), pages 617-642.
    11. Perez-Quiros, Gabriel & Timmermann, Allan, 2001. "Business cycle asymmetries in stock returns: Evidence from higher order moments and conditional densities," Journal of Econometrics, Elsevier, vol. 103(1-2), pages 259-306, July.
    12. Gorgi, Paolo & Koopman, Siem Jan & Li, Mengheng, 2019. "Forecasting economic time series using score-driven dynamic models with mixed-data sampling," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1735-1747.
    13. Campbell, John Y. & Sunderam, Adi & Viceira, Luis M., 2017. "Inflation Bets or Deflation Hedges? The Changing Risks of Nominal Bonds," Critical Finance Review, now publishers, vol. 6(2), pages 263-301, September.
    14. Lorenzo Cappiello & Robert F. Engle & Kevin Sheppard, 2006. "Asymmetric Dynamics in the Correlations of Global Equity and Bond Returns," Journal of Financial Econometrics, Oxford University Press, vol. 4(4), pages 537-572.
    15. Andrew J. Patton, 2004. "On the Out-of-Sample Importance of Skewness and Asymmetric Dependence for Asset Allocation," Journal of Financial Econometrics, Oxford University Press, vol. 2(1), pages 130-168.
    16. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    17. Babsiri, Mohamed El & Zakoian, Jean-Michel, 2001. "Contemporaneous asymmetry in GARCH processes," Journal of Econometrics, Elsevier, vol. 101(2), pages 257-294, April.
    18. Lieven Baele, 2010. "The Determinants of Stock and Bond Return Comovements," The Review of Financial Studies, Society for Financial Studies, vol. 23(6), pages 2374-2428, June.
    19. Jeff Fleming & Chris Kirby & Barbara Ostdiek, 2001. "The Economic Value of Volatility Timing," Journal of Finance, American Finance Association, vol. 56(1), pages 329-352, February.
    20. Hoang Nguyen & M Concepción Ausín & Pedro Galeano, 2019. "Parallel Bayesian Inference for High-Dimensional Dynamic Factor Copulas," Journal of Financial Econometrics, Oxford University Press, vol. 17(1), pages 118-151.
    21. Guidolin, Massimo & Timmermann, Allan, 2007. "Asset allocation under multivariate regime switching," Journal of Economic Dynamics and Control, Elsevier, vol. 31(11), pages 3503-3544, November.
    22. Laurens Swinkels, 2019. "Treasury Bond Return Data Starting in 1962," Data, MDPI, vol. 4(3), pages 1-6, June.
    23. Connolly, Robert & Stivers, Chris & Sun, Licheng, 2005. "Stock Market Uncertainty and the Stock-Bond Return Relation," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 40(1), pages 161-194, March.
    24. Massimo Guidolin & Allan Timmermann, 2006. "An econometric model of nonlinear dynamics in the joint distribution of stock and bond returns," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(1), pages 1-22, January.
    25. Dongho Song, 2017. "Bond Market Exposures to Macroeconomic and Monetary Policy Risks," The Review of Financial Studies, Society for Financial Studies, vol. 30(8), pages 2761-2817.
    26. Christian Conrad & Onno Kleen, 2020. "Two are better than one: Volatility forecasting using multiplicative component GARCH‐MIDAS models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(1), pages 19-45, January.
    27. John Y. Campbell & Carolin Pflueger & Luis M. Viceira, 2020. "Macroeconomic Drivers of Bond and Equity Risks," Journal of Political Economy, University of Chicago Press, vol. 128(8), pages 3148-3185.
    28. Robert F. Engle & Eric Ghysels & Bumjean Sohn, 2013. "Stock Market Volatility and Macroeconomic Fundamentals," The Review of Economics and Statistics, MIT Press, vol. 95(3), pages 776-797, July.
    29. Charlotte Christiansen & Angelo Ranaldo, 2007. "Realized bond—stock correlation: Macroeconomic announcement effects," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 27(5), pages 439-469, May.
    30. Alexander David & Pietro Veronesi, 2013. "What Ties Return Volatilities to Price Valuations and Fundamentals?," Journal of Political Economy, University of Chicago Press, vol. 121(4), pages 682-746.
    31. James W. Taylor, 2019. "Forecasting Value at Risk and Expected Shortfall Using a Semiparametric Approach Based on the Asymmetric Laplace Distribution," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 37(1), pages 121-133, January.
    32. Christian M. Hafner & Hans Manner, 2012. "Dynamic stochastic copula models: estimation, inference and applications," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(2), pages 269-295, March.
    33. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. "On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
    34. Ghysels, Eric & Santa-Clara, Pedro & Valkanov, Rossen, 2006. "Predicting volatility: getting the most out of return data sampled at different frequencies," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 59-95.
    35. Engle, Robert, 2002. "Dynamic Conditional Correlation: A Simple Class of Multivariate Generalized Autoregressive Conditional Heteroskedasticity Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 339-350, July.
    36. Naresh Bansal & Robert A. Connolly & Chris Stivers, 2010. "Regime‐switching in stock index and Treasury futures returns and measures of stock market stress," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 30(8), pages 753-779, August.
    37. Andrew J. Patton, 2006. "Modelling Asymmetric Exchange Rate Dependence," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 47(2), pages 527-556, May.
    38. Peter Christoffersen & Vihang Errunza & Kris Jacobs & Hugues Langlois, 2012. "Is the Potential for International Diversification Disappearing? A Dynamic Copula Approach," The Review of Financial Studies, Society for Financial Studies, vol. 25(12), pages 3711-3751.
    39. Hossein Asgharian & Ai Jun Hou & Farrukh Javed, 2013. "The Importance of the Macroeconomic Variables in Forecasting Stock Return Variance: A GARCH‐MIDAS Approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 32(7), pages 600-612, November.
    40. Christie, Andrew A., 1982. "The stochastic behavior of common stock variances : Value, leverage and interest rate effects," Journal of Financial Economics, Elsevier, vol. 10(4), pages 407-432, December.
    41. Chen, Xiaohong & Fan, Yanqin, 2006. "Estimation and model selection of semiparametric copula-based multivariate dynamic models under copula misspecification," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 125-154.
    42. Joe, Harry, 2005. "Asymptotic efficiency of the two-stage estimation method for copula-based models," Journal of Multivariate Analysis, Elsevier, vol. 94(2), pages 401-419, June.
    43. Colacito, Riccardo & Engle, Robert F. & Ghysels, Eric, 2011. "A component model for dynamic correlations," Journal of Econometrics, Elsevier, vol. 164(1), pages 45-59, September.
    44. Nguyen, Hoang & Ausín, M. Concepción & Galeano, Pedro, 2020. "Variational inference for high dimensional structured factor copulas," Computational Statistics & Data Analysis, Elsevier, vol. 151(C).
    45. Ghysels, Eric & Santa-Clara, Pedro & Valkanov, Rossen, 2004. "The MIDAS Touch: Mixed Data Sampling Regression Models," University of California at Los Angeles, Anderson Graduate School of Management qt9mf223rs, Anderson Graduate School of Management, UCLA.
    46. Jiang, Cuixia & Ding, Xiaoyi & Xu, Qifa & Tong, Yongbo, 2020. "A TVM-Copula-MIDAS-GARCH model with applications to VaR-based portfolio selection," The North American Journal of Economics and Finance, Elsevier, vol. 51(C).
    47. Chih-Chiang Wu & Zih-Ying Lin, 2014. "An economic evaluation of stock-bond return comovements with copula-based GARCH models," Quantitative Finance, Taylor & Francis Journals, vol. 14(7), pages 1283-1296, July.
    48. Yufeng Han, 2006. "Asset Allocation with a High Dimensional Latent Factor Stochastic Volatility Model," The Review of Financial Studies, Society for Financial Studies, vol. 19(1), pages 237-271.
    49. Drew Creal & Siem Jan Koopman & André Lucas, 2013. "Generalized Autoregressive Score Models With Applications," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(5), pages 777-795, August.
    50. Yang, Jian & Zhou, Yinggang & Wang, Zijun, 2009. "The stock-bond correlation and macroeconomic conditions: One and a half centuries of evidence," Journal of Banking & Finance, Elsevier, vol. 33(4), pages 670-680, April.
    51. Farshid Abdi & Angelo Ranaldo, 2017. "A Simple Estimation of Bid-Ask Spreads from Daily Close, High, and Low Prices," The Review of Financial Studies, Society for Financial Studies, vol. 30(12), pages 4437-4480.
    52. Conrad, Christian & Loch, Karin & Rittler, Daniel, 2014. "On the macroeconomic determinants of long-term volatilities and correlations in U.S. stock and crude oil markets," Journal of Empirical Finance, Elsevier, vol. 29(C), pages 26-40.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Virbickaitė, Audronė & Nguyen, Hoang & Tran, Minh-Ngoc, 2023. "Bayesian predictive distributions of oil returns using mixed data sampling volatility models," Resources Policy, Elsevier, vol. 86(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ermolov, Andrey, 2022. "Time-varying risk of nominal bonds: How important are macroeconomic shocks?," Journal of Financial Economics, Elsevier, vol. 145(1), pages 1-28.
    2. Virbickaitė, Audronė & Nguyen, Hoang & Tran, Minh-Ngoc, 2023. "Bayesian predictive distributions of oil returns using mixed data sampling volatility models," Resources Policy, Elsevier, vol. 86(PA).
    3. Nguyen, Hoang & Virbickaitė, Audronė, 2023. "Modeling stock-oil co-dependence with Dynamic Stochastic MIDAS Copula models," Energy Economics, Elsevier, vol. 124(C).
    4. Allard, Anne-Florence & Iania, Leonardo & Smedts, Kristien, 2020. "Stock-bond return correlations: Moving away from “one-frequency-fits-all” by extending the DCC-MIDAS approach," International Review of Financial Analysis, Elsevier, vol. 71(C).
    5. Wu, Chih-Chiang & Liang, Shin-Shun, 2011. "The economic value of range-based covariance between stock and bond returns with dynamic copulas," Journal of Empirical Finance, Elsevier, vol. 18(4), pages 711-727, September.
    6. De Lira Salvatierra, Irving & Patton, Andrew J., 2015. "Dynamic copula models and high frequency data," Journal of Empirical Finance, Elsevier, vol. 30(C), pages 120-135.
    7. Cerrato, Mario & Crosby, John & Kim, Minjoo & Zhao, Yang, 2015. "US Monetary and Fiscal Policies - Conflict or Cooperation?," 2007 Annual Meeting, July 29-August 1, 2007, Portland, Oregon TN 2015-78, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    8. Mario Cerrato & John Crosby & Minjoo Kim & Yang Zhao, 2015. "Modeling Dependence Structure and Forecasting Market Risk with Dynamic Asymmetric Copula," Working Papers 2015_15, Business School - Economics, University of Glasgow.
    9. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    10. Cerrato, Mario & Crosby, John & Kim, Minjoo & Zhao, Yang, 2015. "US Monetary and Fiscal Policies - Conflict or Cooperation?," SIRE Discussion Papers 2015-78, Scottish Institute for Research in Economics (SIRE).
    11. Avdulaj, Krenar & Barunik, Jozef, 2015. "Are benefits from oil–stocks diversification gone? New evidence from a dynamic copula and high frequency data," Energy Economics, Elsevier, vol. 51(C), pages 31-44.
    12. Tobias Eckernkemper & Bastian Gribisch, 2021. "Intraday conditional value at risk: A periodic mixed‐frequency generalized autoregressive score approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(5), pages 883-910, August.
    13. Jiang, Cuixia & Ding, Xiaoyi & Xu, Qifa & Tong, Yongbo, 2020. "A TVM-Copula-MIDAS-GARCH model with applications to VaR-based portfolio selection," The North American Journal of Economics and Finance, Elsevier, vol. 51(C).
    14. Skintzi, Vasiliki D., 2019. "Determinants of stock-bond market comovement in the Eurozone under model uncertainty," International Review of Financial Analysis, Elsevier, vol. 61(C), pages 20-28.
    15. Dimic, Nebojsa & Piljak, Vanja & Swinkels, Laurens & Vulanovic, Milos, 2021. "The structure and degree of dependence in government bond markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 74(C).
    16. Dufour, Alfonso & Stancu, Andrei & Varotto, Simone, 2017. "The equity-like behaviour of sovereign bonds," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 48(C), pages 25-46.
    17. Wu, Chih-Chiang & Chiu, Junmao, 2017. "Economic evaluation of asymmetric and price range information in gold and general financial markets," Journal of International Money and Finance, Elsevier, vol. 74(C), pages 53-68.
    18. Tobias Eckernkemper, 2018. "Modeling Systemic Risk: Time-Varying Tail Dependence When Forecasting Marginal Expected Shortfall," Journal of Financial Econometrics, Oxford University Press, vol. 16(1), pages 63-117.
    19. Xu, Qifa & Chen, Lu & Jiang, Cuixia & Yu, Keming, 2020. "Mixed data sampling expectile regression with applications to measuring financial risk," Economic Modelling, Elsevier, vol. 91(C), pages 469-486.
    20. Chang‐Che Wu & MeiChi Huang & Chih‐Chiang Wu, 2021. "The role of asymmetry and dynamics in carry trade and general financial markets," The Financial Review, Eastern Finance Association, vol. 56(2), pages 331-353, May.

    More about this item

    Keywords

    GAS copulas; MIDAS; Asymmetry;
    All these keywords.

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:empfin:v:73:y:2023:i:c:p:272-292. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jempfin .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.