IDEAS home Printed from https://ideas.repec.org/a/kap/compec/v65y2025i4d10.1007_s10614-024-10621-5.html
   My bibliography  Save this article

Portfolio Optimization During the COVID-19 Epidemic: Based on an Improved QBAS Algorithm and a Dynamic Mixed Frequency Model

Author

Listed:
  • Siyao Wei

    (Southwest University of Science and Technology)

  • Pengfei Luo

    (Southwest University of Science and Technology)

  • Jiashan Song

    (Southwest University of Science and Technology)

  • Kunliang Jiang

    (Southwest University of Science and Technology)

Abstract

The determination of weights and the measurement of risk have been the core problems of portfolio optimization. In this paper, we propose the improved Quantum Beetle Antennae Search (IQBAS) algorithm for solve the first problem. Moreover, we use the GAS-MIDAS-Copula model to solve the second problem. Meanwhile, we combine both methods for portfolio optimization. Using a 5-min high-frequency returns covering ten sectors in the Shanghai Stock Exchange from September 1, 2019 to September 1, 2022, we find that the GAS-MIDAS-Copula model is very effective in describing the portfolio distribution and interdependence structure. Also, for different confidence levels and different optimization objectives, the IQBAS algorithm outperforms other popular optimization methods. In addition, when constructing a portfolio during the COVID-19 epidemic, China’s Medical industry should receive more weight, while China’s Information and Telecom industries should receive less. Our findings are informative on how to better invest during major public health emergencies.

Suggested Citation

  • Siyao Wei & Pengfei Luo & Jiashan Song & Kunliang Jiang, 2025. "Portfolio Optimization During the COVID-19 Epidemic: Based on an Improved QBAS Algorithm and a Dynamic Mixed Frequency Model," Computational Economics, Springer;Society for Computational Economics, vol. 65(4), pages 1999-2028, April.
  • Handle: RePEc:kap:compec:v:65:y:2025:i:4:d:10.1007_s10614-024-10621-5
    DOI: 10.1007/s10614-024-10621-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10614-024-10621-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10614-024-10621-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yingying Xu & Donald Lien, 2022. "Forecasting volatilities of oil and gas assets: A comparison of GAS, GARCH, and EGARCH models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(2), pages 259-278, March.
    2. Nguyen, Hoang & Javed, Farrukh, 2023. "Dynamic relationship between Stock and Bond returns: A GAS MIDAS copula approach," Journal of Empirical Finance, Elsevier, vol. 73(C), pages 272-292.
    3. Fei, Fei & Fuertes, Ana-Maria & Kalotychou, Elena, 2017. "Dependence in credit default swap and equity markets: Dynamic copula with Markov-switching," International Journal of Forecasting, Elsevier, vol. 33(3), pages 662-678.
    4. Alqahtani, Abdullah & Klein, Tony & Khalid, Ali, 2019. "The impact of oil price uncertainty on GCC stock markets," Resources Policy, Elsevier, vol. 64(C).
    5. De Lira Salvatierra, Irving & Patton, Andrew J., 2015. "Dynamic copula models and high frequency data," Journal of Empirical Finance, Elsevier, vol. 30(C), pages 120-135.
    6. Arouri, Mohamed El Hedi & Jouini, Jamel & Nguyen, Duc Khuong, 2012. "On the impacts of oil price fluctuations on European equity markets: Volatility spillover and hedging effectiveness," Energy Economics, Elsevier, vol. 34(2), pages 611-617.
    7. Mokni, Khaled & Youssef, Manel, 2019. "Measuring persistence of dependence between crude oil prices and GCC stock markets: A copula approach," The Quarterly Review of Economics and Finance, Elsevier, vol. 72(C), pages 14-33.
    8. Gong, Yuting & Ma, Chao & Chen, Qiang, 2022. "Exchange rate dependence and economic fundamentals: A Copula-MIDAS approach," Journal of International Money and Finance, Elsevier, vol. 123(C).
    9. Sukcharoen, Kunlapath & Zohrabyan, Tatevik & Leatham, David & Wu, Ximing, 2014. "Interdependence of oil prices and stock market indices: A copula approach," Energy Economics, Elsevier, vol. 44(C), pages 331-339.
    10. Okimoto, Tatsuyoshi, 2008. "New Evidence of Asymmetric Dependence Structures in International Equity Markets," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 43(3), pages 787-815, September.
    11. Hiroshi Konno & Hiroaki Yamazaki, 1991. "Mean-Absolute Deviation Portfolio Optimization Model and Its Applications to Tokyo Stock Market," Management Science, INFORMS, vol. 37(5), pages 519-531, May.
    12. Laporta, Alessandro G. & Merlo, Luca & Petrella, Lea, 2018. "Selection of Value at Risk Models for Energy Commodities," Energy Economics, Elsevier, vol. 74(C), pages 628-643.
    13. Alexander, S. & Coleman, T.F. & Li, Y., 2006. "Minimizing CVaR and VaR for a portfolio of derivatives," Journal of Banking & Finance, Elsevier, vol. 30(2), pages 583-605, February.
    14. Nader Trabelsi & Aviral Kumar Tiwari, 2023. "CO2 Emission Allowances Risk Prediction with GAS and GARCH Models," Computational Economics, Springer;Society for Computational Economics, vol. 61(2), pages 775-805, February.
    15. Jiang, Kunliang & Ye, Wuyi, 2022. "Does the asymmetric dependence volatility affect risk spillovers between the crude oil market and BRICS stock markets?," Economic Modelling, Elsevier, vol. 117(C).
    16. Righi, Marcelo Brutti & Ceretta, Paulo Sergio, 2013. "Estimating non-linear serial and cross-interdependence between financial assets," Journal of Banking & Finance, Elsevier, vol. 37(3), pages 837-846.
    17. William J. Baumol, 1963. "An Expected Gain-Confidence Limit Criterion for Portfolio Selection," Management Science, INFORMS, vol. 10(1), pages 174-182, October.
    18. Wang, Haiying & Yuan, Ying & Li, Yiou & Wang, Xunhong, 2021. "Financial contagion and contagion channels in the forex market: A new approach via the dynamic mixture copula-extreme value theory," Economic Modelling, Elsevier, vol. 94(C), pages 401-414.
    19. Drew Creal & Siem Jan Koopman & André Lucas, 2013. "Generalized Autoregressive Score Models With Applications," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(5), pages 777-795, August.
    20. Gong, Yuting & Chen, Qiang & Liang, Jufang, 2018. "A mixed data sampling copula model for the return-liquidity dependence in stock index futures markets," Economic Modelling, Elsevier, vol. 68(C), pages 586-598.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiang, Kunliang & Ye, Wuyi, 2022. "Does the asymmetric dependence volatility affect risk spillovers between the crude oil market and BRICS stock markets?," Economic Modelling, Elsevier, vol. 117(C).
    2. Virbickaitė, Audronė & Nguyen, Hoang & Tran, Minh-Ngoc, 2023. "Bayesian predictive distributions of oil returns using mixed data sampling volatility models," Resources Policy, Elsevier, vol. 86(PA).
    3. Chang, Kuang-Liang, 2023. "The low-magnitude and high-magnitude asymmetries in tail dependence structures in international equity markets and the role of bilateral exchange rate," Journal of International Money and Finance, Elsevier, vol. 133(C).
    4. Tobias Eckernkemper, 2018. "Modeling Systemic Risk: Time-Varying Tail Dependence When Forecasting Marginal Expected Shortfall," Journal of Financial Econometrics, Oxford University Press, vol. 16(1), pages 63-117.
    5. Zhang, Guofu & Liu, Wei, 2018. "Analysis of the international propagation of contagion between oil and stock markets," Energy, Elsevier, vol. 165(PA), pages 469-486.
    6. Tian, Maoxi & Alshater, Muneer M. & Yoon, Seong-Min, 2022. "Dynamic risk spillovers from oil to stock markets: Fresh evidence from GARCH copula quantile regression-based CoVaR model," Energy Economics, Elsevier, vol. 115(C).
    7. Yang Zhao & Charalampos Stasinakis & Georgios Sermpinis & Filipa Da Silva Fernandes, 2019. "Revisiting Fama–French factors' predictability with Bayesian modelling and copula‐based portfolio optimization," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 24(4), pages 1443-1463, October.
    8. Benlagha, Noureddine, 2020. "Stock market dependence in crisis periods: Evidence from oil price shocks and the Qatar blockade," Research in International Business and Finance, Elsevier, vol. 54(C).
    9. Tachibana, Minoru, 2022. "Safe haven assets for international stock markets: A regime-switching factor copula approach," Research in International Business and Finance, Elsevier, vol. 60(C).
    10. Alqahtani, Faisal & Hamdi, Besma & Hammoudeh, Shawkat, 2021. "The effects of global factors on the Saudi Arabia equity market by firm size: Implications for risk management based on quantile analysis and frequency domain causality," Journal of Multinational Financial Management, Elsevier, vol. 61(C).
    11. Bernardi, Mauro & Catania, Leopoldo, 2018. "Portfolio optimisation under flexible dynamic dependence modelling," Journal of Empirical Finance, Elsevier, vol. 48(C), pages 1-18.
    12. Gong, Yuting & Li, Kevin X. & Chen, Shu-Ling & Shi, Wenming, 2020. "Contagion risk between the shipping freight and stock markets: Evidence from the recent US-China trade war," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 136(C).
    13. Paula V. Tofoli & Flavio A. Ziegelmann & Osvaldo Candido, 2017. "A Comparison Study of Copula Models for Europea Financial Index Returns," International Journal of Economics and Finance, Canadian Center of Science and Education, vol. 9(10), pages 155-178, October.
    14. Nguyen, Hoang & Virbickaitė, Audronė, 2023. "Modeling stock-oil co-dependence with Dynamic Stochastic MIDAS Copula models," Energy Economics, Elsevier, vol. 124(C).
    15. Vêlayoudom Marimoutou & Manel Soury, 2015. "Energy Markets and CO2 Emissions: Analysis by Stochastic Copula Autoregressive Model," AMSE Working Papers 1520, Aix-Marseille School of Economics, France.
    16. Bouri, Elie & Hammoud, Rami & Kassm, Christina Abou, 2023. "The effect of oil implied volatility and geopolitical risk on GCC stock sectors under various market conditions," Energy Economics, Elsevier, vol. 120(C).
    17. Siem Jan Koopman & Rutger Lit & André Lucas & Anne Opschoor, 2018. "Dynamic discrete copula models for high‐frequency stock price changes," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 33(7), pages 966-985, November.
    18. Zongwu Cai & Ying Fang & Dingshi Tian, 2024. "CAViaR Model Selection Via Adaptive Lasso," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 202403, University of Kansas, Department of Economics, revised Jan 2024.
    19. Zaighum, Isma & Aman, Ameenullah & Sharif, Arshian & Suleman, Muhammad Tahir, 2021. "Do energy prices interact with global Islamic stocks? Fresh insights from quantile ARDL approach," Resources Policy, Elsevier, vol. 72(C).
    20. Yuan, Ying & Wang, Haiying & Jin, Xiu, 2022. "Pandemic-driven financial contagion and investor behavior: Evidence from the COVID-19," International Review of Financial Analysis, Elsevier, vol. 83(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:65:y:2025:i:4:d:10.1007_s10614-024-10621-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.