IDEAS home Printed from https://ideas.repec.org/a/eee/finmar/v64y2023ics1386418122000908.html
   My bibliography  Save this article

Equity premium prediction: The role of information from the options market

Author

Listed:
  • Alexandridis, Antonios K.
  • Apergis, Iraklis
  • Panopoulou, Ekaterini
  • Voukelatos, Nikolaos

Abstract

We examine the role of information from the options market in forecasting the equity premium. We provide evidence that the equity premium is predictable out-of-sample using a set of CBOE strategy benchmark indices as predictors. We use a range of econometric approaches to generate point, quantile, and density forecasts of the equity premium. We find that models based on option variables consistently outperform the historical average benchmark. In addition to statistical gains, using option predictors results in substantial economic benefits for a mean–variance investor, delivering up to a fivefold increase in certainty equivalent returns over the benchmark during the 1996–2021 sample period.

Suggested Citation

  • Alexandridis, Antonios K. & Apergis, Iraklis & Panopoulou, Ekaterini & Voukelatos, Nikolaos, 2023. "Equity premium prediction: The role of information from the options market," Journal of Financial Markets, Elsevier, vol. 64(C).
  • Handle: RePEc:eee:finmar:v:64:y:2023:i:c:s1386418122000908
    DOI: 10.1016/j.finmar.2022.100801
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1386418122000908
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.finmar.2022.100801?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Martin Lettau & Stijn Van Nieuwerburgh, 2008. "Reconciling the Return Predictability Evidence," The Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1607-1652, July.
    2. Ivo Welch & Amit Goyal, 2008. "A Comprehensive Look at The Empirical Performance of Equity Premium Prediction," The Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1455-1508, July.
    3. Tim Bollerslev & George Tauchen & Hao Zhou, 2009. "Expected Stock Returns and Variance Risk Premia," The Review of Financial Studies, Society for Financial Studies, vol. 22(11), pages 4463-4492, November.
    4. Sebastiano Manzan, 2015. "Forecasting the Distribution of Economic Variables in a Data-Rich Environment," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(1), pages 144-164, January.
    5. Xi Dong & Yan Li & David E. Rapach & Guofu Zhou, 2022. "Anomalies and the Expected Market Return," Journal of Finance, American Finance Association, vol. 77(1), pages 639-681, February.
    6. Malcolm Baker & Jeffrey Wurgler, 2006. "Investor Sentiment and the Cross‐Section of Stock Returns," Journal of Finance, American Finance Association, vol. 61(4), pages 1645-1680, August.
    7. Kothari, S. P. & Shanken, Jay, 1997. "Book-to-market, dividend yield, and expected market returns: A time-series analysis," Journal of Financial Economics, Elsevier, vol. 44(2), pages 169-203, May.
    8. Bollerslev, Tim & Marrone, James & Xu, Lai & Zhou, Hao, 2014. "Stock Return Predictability and Variance Risk Premia: Statistical Inference and International Evidence," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 49(3), pages 633-661, June.
    9. Jennifer Conrad & Robert F. Dittmar & Eric Ghysels, 2013. "Ex Ante Skewness and Expected Stock Returns," Journal of Finance, American Finance Association, vol. 68(1), pages 85-124, February.
    10. Baetje, Fabian & Menkhoff, Lukas, 2016. "Equity premium prediction: Are economic and technical indicators unstable?," International Journal of Forecasting, Elsevier, vol. 32(4), pages 1193-1207.
    11. Maio, Paulo, 2016. "Cross-sectional return dispersion and the equity premium," Journal of Financial Markets, Elsevier, vol. 29(C), pages 87-109.
    12. Shackleton, Mark B. & Taylor, Stephen J. & Yu, Peng, 2010. "A multi-horizon comparison of density forecasts for the S&P 500 using index returns and option prices," Journal of Banking & Finance, Elsevier, vol. 34(11), pages 2678-2693, November.
    13. Turan G. Bali & Armen Hovakimian, 2009. "Volatility Spreads and Expected Stock Returns," Management Science, INFORMS, vol. 55(11), pages 1797-1812, November.
    14. Victor Chernozhukov & Iv·n Fern·ndez-Val & Alfred Galichon, 2010. "Quantile and Probability Curves Without Crossing," Econometrica, Econometric Society, vol. 78(3), pages 1093-1125, May.
    15. Li, Jiahan & Tsiakas, Ilias, 2017. "Equity premium prediction: The role of economic and statistical constraints," Journal of Financial Markets, Elsevier, vol. 36(C), pages 56-75.
    16. John Y. Campbell, Robert J. Shiller, 1988. "The Dividend-Price Ratio and Expectations of Future Dividends and Discount Factors," The Review of Financial Studies, Society for Financial Studies, vol. 1(3), pages 195-228.
    17. Clark, Todd E. & West, Kenneth D., 2007. "Approximately normal tests for equal predictive accuracy in nested models," Journal of Econometrics, Elsevier, vol. 138(1), pages 291-311, May.
    18. Amisano, Gianni & Giacomini, Raffaella, 2007. "Comparing Density Forecasts via Weighted Likelihood Ratio Tests," Journal of Business & Economic Statistics, American Statistical Association, vol. 25, pages 177-190, April.
    19. Christopher J. Neely & David E. Rapach & Jun Tu & Guofu Zhou, 2014. "Forecasting the Equity Risk Premium: The Role of Technical Indicators," Management Science, INFORMS, vol. 60(7), pages 1772-1791, July.
    20. Chang, Bo Young & Christoffersen, Peter & Jacobs, Kris, 2013. "Market skewness risk and the cross section of stock returns," Journal of Financial Economics, Elsevier, vol. 107(1), pages 46-68.
    21. John H. Cochrane, 2008. "The Dog That Did Not Bark: A Defense of Return Predictability," The Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1533-1575, July.
    22. Luiz Renato Lima & Fanning Meng, 2017. "Out‐of‐Sample Return Predictability: A Quantile Combination Approach," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(4), pages 877-895, June.
    23. Fama, Eugene F. & French, Kenneth R., 1988. "Dividend yields and expected stock returns," Journal of Financial Economics, Elsevier, vol. 22(1), pages 3-25, October.
    24. Tsiakas, Ilias & Li, Jiahan & Zhang, Haibin, 2020. "Equity premium prediction and the state of the economy," Journal of Empirical Finance, Elsevier, vol. 58(C), pages 75-95.
    25. Bryan Kelly & Seth Pruitt, 2013. "Market Expectations in the Cross-Section of Present Values," Journal of Finance, American Finance Association, vol. 68(5), pages 1721-1756, October.
    26. Pettenuzzo, Davide & Timmermann, Allan & Valkanov, Rossen, 2014. "Forecasting stock returns under economic constraints," Journal of Financial Economics, Elsevier, vol. 114(3), pages 517-553.
    27. Loukia Meligkotsidou & Ekaterini Panopoulou & Ioannis D. Vrontos & Spyridon D. Vrontos, 2014. "A Quantile Regression Approach to Equity Premium Prediction," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 33(7), pages 558-576, November.
    28. repec:hal:wpspec:info:hdl:2441/5rkqqmvrn4tl22s9mc4b6ga2g is not listed on IDEAS
    29. Chordia, Tarun & Lin, Tse-Chun & Xiang, Vincent, 2021. "Risk-Neutral Skewness, Informed Trading, and the Cross Section of Stock Returns," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 56(5), pages 1713-1737, August.
    30. Joel M. Vanden, 2008. "Information Quality and Options," The Review of Financial Studies, Society for Financial Studies, vol. 21(6), pages 2635-2676, November.
    31. Bryan Kelly & Hanno Lustig & Stijn Van Nieuwerburgh, 2016. "Too-Systemic-to-Fail: What Option Markets Imply about Sector-Wide Government Guarantees," American Economic Review, American Economic Association, vol. 106(6), pages 1278-1319, June.
    32. Tilmann Gneiting & Roopesh Ranjan, 2011. "Comparing Density Forecasts Using Threshold- and Quantile-Weighted Scoring Rules," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 29(3), pages 411-422, July.
    33. James S. Doran & David R. Peterson & Brian C. Tarrant, 2007. "Is there information in the volatility skew?," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 27(10), pages 921-959, October.
    34. Tong Suk Kim & Heewoo Park, 2018. "Is stock return predictability of option‐implied skewness affected by the market state?," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(9), pages 1024-1042, September.
    35. John Y. Campbell & Samuel B. Thompson, 2008. "Predicting Excess Stock Returns Out of Sample: Can Anything Beat the Historical Average?," The Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1509-1531, July.
    36. repec:hal:spmain:info:hdl:2441/5rkqqmvrn4tl22s9mc4b6ga2g is not listed on IDEAS
    37. Henkel, Sam James & Martin, J. Spencer & Nardari, Federico, 2011. "Time-varying short-horizon predictability," Journal of Financial Economics, Elsevier, vol. 99(3), pages 560-580, March.
    38. Guidolin, Massimo & Hyde, Stuart & McMillan, David & Ono, Sadayuki, 2009. "Non-linear predictability in stock and bond returns: When and where is it exploitable?," International Journal of Forecasting, Elsevier, vol. 25(2), pages 373-399.
    39. David E. Rapach & Jack K. Strauss & Guofu Zhou, 2010. "Out-of-Sample Equity Premium Prediction: Combination Forecasts and Links to the Real Economy," The Review of Financial Studies, Society for Financial Studies, vol. 23(2), pages 821-862, February.
    40. Wang, Yudong & Pan, Zhiyuan & Liu, Li & Wu, Chongfeng, 2019. "Oil price increases and the predictability of equity premium," Journal of Banking & Finance, Elsevier, vol. 102(C), pages 43-58.
    41. Bali, Turan G. & Murray, Scott, 2013. "Does Risk-Neutral Skewness Predict the Cross-Section of Equity Option Portfolio Returns?," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 48(4), pages 1145-1171, August.
    42. Jiang, Fuwei & Lee, Joshua & Martin, Xiumin & Zhou, Guofu, 2019. "Manager sentiment and stock returns," Journal of Financial Economics, Elsevier, vol. 132(1), pages 126-149.
    43. Bing Han, 2008. "Investor Sentiment and Option Prices," The Review of Financial Studies, Society for Financial Studies, vol. 21(1), pages 387-414, January.
    44. Loukia Meligkotsidou & Ekaterini Panopoulou & Ioannis D. Vrontos & Spyridon D. Vrontos, 2021. "Out-of-sample equity premium prediction: a complete subset quantile regression approach," The European Journal of Finance, Taylor & Francis Journals, vol. 27(1-2), pages 110-135, January.
    45. Raffaella Giacomini & Halbert White, 2006. "Tests of Conditional Predictive Ability," Econometrica, Econometric Society, vol. 74(6), pages 1545-1578, November.
    46. Loukia Meligkotsidou & Ekaterini Panopoulou & Ioannis D. Vrontos & Spyridon D. Vrontos, 2019. "Quantile forecast combinations in realised volatility prediction," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 70(10), pages 1720-1733, October.
    47. Dashan Huang & Fuwei Jiang & Jun Tu & Guofu Zhou, 2015. "Investor Sentiment Aligned: A Powerful Predictor of Stock Returns," The Review of Financial Studies, Society for Financial Studies, vol. 28(3), pages 791-837.
    48. Timmermann, Allan, 2008. "Reply to the discussion of Elusive Return Predictability," International Journal of Forecasting, Elsevier, vol. 24(1), pages 29-30.
    49. Xing, Yuhang & Zhang, Xiaoyan & Zhao, Rui, 2010. "What Does the Individual Option Volatility Smirk Tell Us About Future Equity Returns?," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 45(3), pages 641-662, June.
    50. Oleg Bondarenko, 2014. "Why Are Put Options So Expensive?," Quarterly Journal of Finance (QJF), World Scientific Publishing Co. Pte. Ltd., vol. 4(03), pages 1-50.
    51. Thomas Q. Pedersen, 2015. "Predictable Return Distributions," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 34(2), pages 114-132, March.
    52. Fama, Eugene F. & French, Kenneth R., 1989. "Business conditions and expected returns on stocks and bonds," Journal of Financial Economics, Elsevier, vol. 25(1), pages 23-49, November.
    53. Gneiting, Tilmann & Raftery, Adrian E., 2007. "Strictly Proper Scoring Rules, Prediction, and Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 359-378, March.
    54. Torben G. Andersen & Nicola Fusari & Viktor Todorov, 2020. "The Pricing of Tail Risk and the Equity Premium: Evidence From International Option Markets," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 38(3), pages 662-678, July.
    55. Hui Zou & Trevor Hastie, 2005. "Addendum: Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(5), pages 768-768, November.
    56. Gneiting, Tilmann & Ranjan, Roopesh, 2011. "Comparing Density Forecasts Using Threshold- and Quantile-Weighted Scoring Rules," Journal of Business & Economic Statistics, American Statistical Association, vol. 29(3), pages 411-422.
    57. Pontiff, Jeffrey & Schall, Lawrence D., 1998. "Book-to-market ratios as predictors of market returns," Journal of Financial Economics, Elsevier, vol. 49(2), pages 141-160, August.
    58. Cao, Charles & Simin, Timothy & Xiao, Han, 2020. "Predicting the equity premium with the implied volatility spread," Journal of Financial Markets, Elsevier, vol. 51(C).
    59. Timmermann, Allan, 2008. "Elusive return predictability," International Journal of Forecasting, Elsevier, vol. 24(1), pages 1-18.
    60. Hui Zou & Trevor Hastie, 2005. "Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(2), pages 301-320, April.
    61. Victor Chernozhukov & Ivan Fernandez-Val & Alfred Galichon, 2007. "Quantile and probability curves without crossing," CeMMAP working papers CWP10/07, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gonçalo Faria & Fabio Verona, 2016. "Forecasting the equity risk premium with frequency-decomposed predictors," Working Papers de Economia (Economics Working Papers) 06, Católica Porto Business School, Universidade Católica Portuguesa.
    2. Davide Pettenuzzo & Francesco Ravazzolo, 2016. "Optimal Portfolio Choice Under Decision‐Based Model Combinations," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(7), pages 1312-1332, November.
    3. Ma, Feng & Wang, Ruoxin & Lu, Xinjie & Wahab, M.I.M., 2021. "A comprehensive look at stock return predictability by oil prices using economic constraint approaches," International Review of Financial Analysis, Elsevier, vol. 78(C).
    4. Gonçalo Faria & Fabio Verona, 2016. "Forecasting the equity risk premium with frequency-decomposed predictors," Working Papers de Economia (Economics Working Papers) 06, Católica Porto Business School, Universidade Católica Portuguesa.
    5. Dai, Zhifeng & Kang, Jie & Wen, Fenghua, 2021. "Predicting stock returns: A risk measurement perspective," International Review of Financial Analysis, Elsevier, vol. 74(C).
    6. Yin, Anwen, 2020. "Equity premium prediction and optimal portfolio decision with Bagging," The North American Journal of Economics and Finance, Elsevier, vol. 54(C).
    7. repec:zbw:bofrdp:2017_001 is not listed on IDEAS
    8. Rapach, David & Zhou, Guofu, 2013. "Forecasting Stock Returns," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 328-383, Elsevier.
    9. Leland E. Farmer & Lawrence Schmidt & Allan Timmermann, 2023. "Pockets of Predictability," Journal of Finance, American Finance Association, vol. 78(3), pages 1279-1341, June.
    10. Pan, Zhiyuan & Pettenuzzo, Davide & Wang, Yudong, 2020. "Forecasting stock returns: A predictor-constrained approach," Journal of Empirical Finance, Elsevier, vol. 55(C), pages 200-217.
    11. Dai, Zhifeng & Zhu, Huan, 2020. "Stock return predictability from a mixed model perspective," Pacific-Basin Finance Journal, Elsevier, vol. 60(C).
    12. José Afonso Faias & Tiago Castel-Branco, 2018. "Out-Of-Sample Stock Return Prediction Using Higher-Order Moments," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 21(06), pages 1-27, September.
    13. Zhang, Yaojie & Ma, Feng & Wang, Yudong, 2019. "Forecasting crude oil prices with a large set of predictors: Can LASSO select powerful predictors?," Journal of Empirical Finance, Elsevier, vol. 54(C), pages 97-117.
    14. Wang, Yudong & Pan, Zhiyuan & Liu, Li & Wu, Chongfeng, 2019. "Oil price increases and the predictability of equity premium," Journal of Banking & Finance, Elsevier, vol. 102(C), pages 43-58.
    15. Smith, Simon C., 2021. "International stock return predictability," International Review of Financial Analysis, Elsevier, vol. 78(C).
    16. Jiang, Fuwei & Lee, Joshua & Martin, Xiumin & Zhou, Guofu, 2019. "Manager sentiment and stock returns," Journal of Financial Economics, Elsevier, vol. 132(1), pages 126-149.
    17. Baetje, Fabian & Menkhoff, Lukas, 2016. "Equity premium prediction: Are economic and technical indicators unstable?," International Journal of Forecasting, Elsevier, vol. 32(4), pages 1193-1207.
    18. Tsiakas, Ilias & Li, Jiahan & Zhang, Haibin, 2020. "Equity premium prediction and the state of the economy," Journal of Empirical Finance, Elsevier, vol. 58(C), pages 75-95.
    19. Biao Guo & Hai Lin, 2020. "Volatility and jump risk in option returns," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 40(11), pages 1767-1792, November.
    20. Baltas, Nick & Karyampas, Dimitrios, 2018. "Forecasting the equity risk premium: The importance of regime-dependent evaluation," Journal of Financial Markets, Elsevier, vol. 38(C), pages 83-102.
    21. Dominik Wolff & Ulrich Neugebauer, 2019. "Tree-based machine learning approaches for equity market predictions," Journal of Asset Management, Palgrave Macmillan, vol. 20(4), pages 273-288, July.

    More about this item

    Keywords

    Equity premium; Forecasting; Options; Quantile regression;
    All these keywords.

    JEL classification:

    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:finmar:v:64:y:2023:i:c:s1386418122000908. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/finmar .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.