IDEAS home Printed from https://ideas.repec.org/p/tse/wpaper/30474.html
   My bibliography  Save this paper

Portfolio Selection in a Multi-Input Multi-Output Setting: a Simple Monte-Carlo-FDH Algorithm

Author

Listed:
  • Nalpas, Nicolas
  • Simar, Léopold
  • Vanhems, Anne

Abstract

This paper proposes a nonparametric efficiency measurement approach for the static portfo- lio selection problem in a general inputs-outputs space, where inputs can include variance and kurtosis and outputs can include mean and skewness. Our work is in the vein of Briec, Kerstens and Jokung (2007) and Jurzenko, Maillet and Merlin (2006) who develop a directional dis- tance (shortage function) approach to evaluate the performance of portfolios in Mean-Variance- Skewness and in Mean-Variance-Skewness-Kurtosis spaces. Our approach use the Free Disposal Hull (FDH) estimator to derive an algorithm avoiding the heavy and non-robust numerical op- timization approaches suggested so far. This new approach is much faster, more robust to reach the optimum and more exible since it can be extended to more general situations. We illustrate the algorithm with a data set on the French CAC 40 already used in the literature, to compare our method with the numerical optimization approaches.

Suggested Citation

  • Nalpas, Nicolas & Simar, Léopold & Vanhems, Anne, 2016. "Portfolio Selection in a Multi-Input Multi-Output Setting: a Simple Monte-Carlo-FDH Algorithm," TSE Working Papers 16-648, Toulouse School of Economics (TSE).
  • Handle: RePEc:tse:wpaper:30474
    as

    Download full text from publisher

    File URL: https://www.tse-fr.eu/sites/default/files/TSE/documents/doc/wp/2016/wp_tse_648.pdf
    File Function: Full text
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Walter Briec & Kristiaan Kerstens & Octave Jokung, 2007. "Mean-Variance-Skewness Portfolio Performance Gauging: A General Shortage Function and Dual Approach," Management Science, INFORMS, vol. 53(1), pages 135-149, January.
    2. Simar, Léopold & Vanhems, Anne, 2012. "Probabilistic characterization of directional distances and their robust versions," Journal of Econometrics, Elsevier, vol. 166(2), pages 342-354.
    3. Michael W. Brandt & Amit Goyal & Pedro Santa-Clara & Jonathan R. Stroud, 2005. "A Simulation Approach to Dynamic Portfolio Choice with an Application to Learning About Return Predictability," Review of Financial Studies, Society for Financial Studies, vol. 18(3), pages 831-873.
    4. W. Briec & K. Kerstens & J. B. Lesourd, 2004. "Single-Period Markowitz Portfolio Selection, Performance Gauging, and Duality: A Variation on the Luenberger Shortage Function," Journal of Optimization Theory and Applications, Springer, vol. 120(1), pages 1-27, January.
    5. Vikas Agarwal, 2004. "Risks and Portfolio Decisions Involving Hedge Funds," Review of Financial Studies, Society for Financial Studies, vol. 17(1), pages 63-98.
    6. Daraio, Cinzia & Simar, Léopold, 2014. "Directional distances and their robust versions: Computational and testing issues," European Journal of Operational Research, Elsevier, vol. 237(1), pages 358-369.
    7. Eric Jondeau & Michael Rockinger, 2006. "Optimal Portfolio Allocation under Higher Moments," European Financial Management, European Financial Management Association, vol. 12(1), pages 29-55, January.
    8. Briec, Walter & Kerstens, Kristiaan & Van de Woestyne, Ignace, 2013. "Portfolio selection with skewness: A comparison of methods and a generalized one fund result," European Journal of Operational Research, Elsevier, vol. 230(2), pages 412-421.
    9. Guidolin, Massimo & Timmermann, Allan, 2007. "Asset allocation under multivariate regime switching," Journal of Economic Dynamics and Control, Elsevier, vol. 31(11), pages 3503-3544, November.
    10. Kerstens, Kristiaan & Mounir, Amine & Van de Woestyne, Ignace, 2011. "Geometric representation of the mean-variance-skewness portfolio frontier based upon the shortage function," European Journal of Operational Research, Elsevier, vol. 210(1), pages 81-94, April.
    11. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    12. Scott, Robert C & Horvath, Philip A, 1980. "On the Direction of Preference for Moments of Higher Order Than the Variance," Journal of Finance, American Finance Association, vol. 35(4), pages 915-919, September.
    13. Robert F. Dittmar, 2002. "Nonlinear Pricing Kernels, Kurtosis Preference, and Evidence from the Cross Section of Equity Returns," Journal of Finance, American Finance Association, vol. 57(1), pages 369-403, February.
    14. R. G. Chambers & Y. Chung & R. Färe, 1998. "Profit, Directional Distance Functions, and Nerlovian Efficiency," Journal of Optimization Theory and Applications, Springer, vol. 98(2), pages 351-364, August.
    15. Sun, Qian & Yan, Yuxing, 2003. "Skewness persistence with optimal portfolio selection," Journal of Banking & Finance, Elsevier, vol. 27(6), pages 1111-1121, June.
    16. Chunhachinda, Pornchai & Dandapani, Krishnan & Hamid, Shahid & Prakash, Arun J., 1997. "Portfolio selection and skewness: Evidence from international stock markets," Journal of Banking & Finance, Elsevier, vol. 21(2), pages 143-167, February.
    17. Bertrand Maillet & Emmanuel Jurczenko & Paul Merlin, 2006. "Hedge Funds Portfolio Selection with Higher-order Moments: A Non-parametric Mean-Variance-Skewness-Kurtosis Efficient Frontier," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-00308993, HAL.
    18. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
    19. Chamberlain, Gary, 1983. "A characterization of the distributions that imply mean--Variance utility functions," Journal of Economic Theory, Elsevier, vol. 29(1), pages 185-201, February.
    20. Kimball, Miles S, 1993. "Standard Risk Aversion," Econometrica, Econometric Society, vol. 61(3), pages 589-611, May.
    21. Hsieh, David A, 1989. "Modeling Heteroscedasticity in Daily Foreign-Exchange Rates," Journal of Business & Economic Statistics, American Statistical Association, vol. 7(3), pages 307-317, July.
    22. Jondeau, Eric & Rockinger, Michael, 2003. "Conditional volatility, skewness, and kurtosis: existence, persistence, and comovements," Journal of Economic Dynamics and Control, Elsevier, vol. 27(10), pages 1699-1737, August.
    23. Arrow, Kenneth J, 1970. "New Ideas in Pure Theory: Discussion," American Economic Review, American Economic Association, vol. 60(2), pages 462-463, May.
    24. Lamb, John D. & Tee, Kai-Hong, 2012. "Data envelopment analysis models of investment funds," European Journal of Operational Research, Elsevier, vol. 216(3), pages 687-696.
    25. Campbell Harvey & John Liechty & Merrill Liechty & Peter Muller, 2010. "Portfolio selection with higher moments," Quantitative Finance, Taylor & Francis Journals, vol. 10(5), pages 469-485.
    26. Campbell R. Harvey & Akhtar Siddique, 2000. "Conditional Skewness in Asset Pricing Tests," Journal of Finance, American Finance Association, vol. 55(3), pages 1263-1295, June.
    27. Joro, Tarja & Na, Paul, 2006. "Portfolio performance evaluation in a mean-variance-skewness framework," European Journal of Operational Research, Elsevier, vol. 175(1), pages 446-461, November.
    28. Morey, Matthew R. & Morey, Richard C., 1999. "Mutual fund performance appraisals: a multi-horizon perspective with endogenous benchmarking," Omega, Elsevier, vol. 27(2), pages 241-258, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhou, Zhongbao & Jin, Qianying & Xiao, Helu & Wu, Qian & Liu, Wenbin, 2018. "Estimation of cardinality constrained portfolio efficiency via segmented DEA," Omega, Elsevier, vol. 76(C), pages 28-37.

    More about this item

    Keywords

    Directional Distance function; FDH estimator; Efficient frontier; Portfolio performance;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tse:wpaper:30474. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (). General contact details of provider: http://edirc.repec.org/data/tsetofr.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.