IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v101y2010i4p999-1015.html
   My bibliography  Save this article

Asymptotic distributions of two "synthetic data" estimators for censored single-index models

Author

Listed:
  • Lu, Xuewen

Abstract

The censored single-index model provides a flexible way for modelling the association between a response and a set of predictor variables when the response variable is randomly censored and the link function is unknown. It presents a technique for "dimension reduction" in semiparametric censored regression models and generalizes the existing accelerated failure time models for survival analysis. This paper proposes two methods for estimation of single-index models with randomly censored samples. We first transform the censored data into synthetic data or pseudo-responses unbiasedly, then obtain estimates of the index coefficients by the rOPG or rMAVE procedures of Xia (2006) [1]. Finally, we estimate the unknown nonparametric link function using techniques for univariate censored nonparametric regression. The estimators for the index coefficients are shown to be root-n consistent and asymptotically normal. In addition, the estimator for the unknown regression function is a local linear kernel regression estimator and can be estimated with the same efficiency as the parameters are known. Monte Carlo simulations are conducted to illustrate the proposed methodologies.

Suggested Citation

  • Lu, Xuewen, 2010. "Asymptotic distributions of two "synthetic data" estimators for censored single-index models," Journal of Multivariate Analysis, Elsevier, vol. 101(4), pages 999-1015, April.
  • Handle: RePEc:eee:jmvana:v:101:y:2010:i:4:p:999-1015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(09)00163-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Arthur Lewbel & Oliver Linton, 2002. "Nonparametric Censored and Truncated Regression," Econometrica, Econometric Society, vol. 70(2), pages 765-779, March.
    2. Nielsen, Jens P. & Linton, Oliver & Bickel, Peter J., 1998. "On a semiparametric survival model with flexible covariate effect," LSE Research Online Documents on Economics 301, London School of Economics and Political Science, LSE Library.
    3. Srinivasan, C. & Zhou, M., 1994. "Linear Regression with Censoring," Journal of Multivariate Analysis, Elsevier, vol. 49(2), pages 179-201, May.
    4. Powell, James L & Stock, James H & Stoker, Thomas M, 1989. "Semiparametric Estimation of Index Coefficients," Econometrica, Econometric Society, vol. 57(6), pages 1403-1430, November.
    5. Yingcun Xia & Howell Tong & W. K. Li & Li‐Xing Zhu, 2002. "An adaptive estimation of dimension reduction space," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(3), pages 363-410, August.
    6. Lai, T. L. & Ying, Z. L. & Zheng, Z. K., 1995. "Asymptotic Normality of a Class of Adaptive Statistics with Applications to Synthetic Data Methods for Censored Regression," Journal of Multivariate Analysis, Elsevier, vol. 52(2), pages 259-279, February.
    7. Cédric Heuchenne & Ingrid Keilegom, 2007. "Polynomial Regression with Censored Data based on Preliminary Nonparametric Estimation," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 59(2), pages 273-297, June.
    8. Lu, Xuewen & Burke, M.D., 2005. "Censored multiple regression by the method of average derivatives," Journal of Multivariate Analysis, Elsevier, vol. 95(1), pages 182-205, July.
    9. Jianhua Z. Huang & Linxu Liu, 2006. "Polynomial Spline Estimation and Inference of Proportional Hazards Regression Models with Flexible Relative Risk Form," Biometrics, The International Biometric Society, vol. 62(3), pages 793-802, September.
    10. Xia, Yingcun, 2006. "Asymptotic Distributions For Two Estimators Of The Single-Index Model," Econometric Theory, Cambridge University Press, vol. 22(6), pages 1112-1137, December.
    11. Gørgens, Tue, 2004. "Average Derivatives For Hazard Functions," Econometric Theory, Cambridge University Press, vol. 20(3), pages 437-463, June.
    12. Delecroix, Michel & Härdle, Wolfgang & Hristache, Marian, 2003. "Efficient estimation in conditional single-index regression," Journal of Multivariate Analysis, Elsevier, vol. 86(2), pages 213-226, August.
    13. Zhezhen Jin & D. Y. Lin & Zhiliang Ying, 2006. "On least-squares regression with censored data," Biometrika, Biometrika Trust, vol. 93(1), pages 147-161, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Strzalkowska-Kominiak, Ewa & Cao, Ricardo, 2013. "Maximum likelihood estimation for conditional distribution single-index models under censoring," Journal of Multivariate Analysis, Elsevier, vol. 114(C), pages 74-98.
    2. Lai, Peng & Li, Gaorong & Lian, Heng, 2013. "Semiparametric estimation of fixed effects panel data single-index model," Statistics & Probability Letters, Elsevier, vol. 83(6), pages 1595-1602.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lu, Xuewen & Cheng, Tsung-Lin, 2007. "Randomly censored partially linear single-index models," Journal of Multivariate Analysis, Elsevier, vol. 98(10), pages 1895-1922, November.
    2. Gutknecht, Daniel, 2011. "Nonclassical Measurement Error in a Nonlinear (Duration) Model," Economic Research Papers 270763, University of Warwick - Department of Economics.
    3. Huybrechts F. Bindele & Ash Abebe & Karlene N. Meyer, 2018. "General rank-based estimation for regression single index models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 70(5), pages 1115-1146, October.
    4. Lu, Xuewen & Burke, M.D., 2005. "Censored multiple regression by the method of average derivatives," Journal of Multivariate Analysis, Elsevier, vol. 95(1), pages 182-205, July.
    5. Yang, Jing & Tian, Guoliang & Lu, Fang & Lu, Xuewen, 2020. "Single-index modal regression via outer product gradients," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    6. Yingcun Xia & Wolfgang Härdle & Oliver Linton, 2009. "Optimal Smoothing for a Computationally and Statistically Efficient Single Index Estimator," SFB 649 Discussion Papers SFB649DP2009-028, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    7. Chiang, Chin-Tsang & Huang, Ming-Yueh, 2012. "New estimation and inference procedures for a single-index conditional distribution model," Journal of Multivariate Analysis, Elsevier, vol. 111(C), pages 271-285.
    8. Qingming Zou & Zhongyi Zhu, 2014. "M-estimators for single-index model using B-spline," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 77(2), pages 225-246, February.
    9. Yu, Lili & Zhao, Yichuan, 2024. "Laplace approximated quasi-likelihood method for heteroscedastic survival data," Computational Statistics & Data Analysis, Elsevier, vol. 190(C).
    10. Bao, Yanchun & He, Shuyuan & Mei, Changlin, 2007. "The Koul-Susarla-Van Ryzin and weighted least squares estimates for censored linear regression model: A comparative study," Computational Statistics & Data Analysis, Elsevier, vol. 51(12), pages 6488-6497, August.
    11. Feng, Long & Zou, Changliang & Wang, Zhaojun, 2012. "Rank-based inference for the single-index model," Statistics & Probability Letters, Elsevier, vol. 82(3), pages 535-541.
    12. Chin-Shang Li & Minggen Lu, 2018. "A lack-of-fit test for generalized linear models via single-index techniques," Computational Statistics, Springer, vol. 33(2), pages 731-756, June.
    13. Feng, Sanying & Kong, Kaidi & Kong, Yinfei & Li, Gaorong & Wang, Zhaoliang, 2022. "Statistical inference of heterogeneous treatment effect based on single-index model," Computational Statistics & Data Analysis, Elsevier, vol. 175(C).
    14. Zhu, Xuehu & Guo, Xu & Lin, Lu & Zhu, Lixing, 2015. "Heteroscedasticity checks for single index models," Journal of Multivariate Analysis, Elsevier, vol. 136(C), pages 41-55.
    15. Jing Sun, 2016. "Composite quantile regression for single-index models with asymmetric errors," Computational Statistics, Springer, vol. 31(1), pages 329-351, March.
    16. Escanciano, Juan Carlos & Song, Kyungchul, 2010. "Testing single-index restrictions with a focus on average derivatives," Journal of Econometrics, Elsevier, vol. 156(2), pages 377-391, June.
    17. Li, Jianbo & Zhang, Riquan, 2011. "Partially varying coefficient single index proportional hazards regression models," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 389-400, January.
    18. Sun, Jie & Kopciuk, Karen A. & Lu, Xuewen, 2008. "Polynomial spline estimation of partially linear single-index proportional hazards regression models," Computational Statistics & Data Analysis, Elsevier, vol. 53(1), pages 176-188, September.
    19. Wanrong Liu & Xuewen Lu, 2009. "Weighted least squares method for censored linear models," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 21(7), pages 787-799.
    20. Rothe, Christoph, 2009. "Semiparametric estimation of binary response models with endogenous regressors," Journal of Econometrics, Elsevier, vol. 153(1), pages 51-64, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:101:y:2010:i:4:p:999-1015. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.