IDEAS home Printed from https://ideas.repec.org/p/ehl/lserod/301.html
   My bibliography  Save this paper

On a semiparametric survival model with flexible covariate effect

Author

Listed:
  • Nielsen, Jens P.
  • Linton, Oliver
  • Bickel, Peter J.

Abstract

A semiparametric hazard model with parametrized time but general covariate dependency is formulated and analyzed inside the framework of counting process theory. A profile likelihood principle is introduced for estimation of the parameters: the resulting estimator is n1/2-consistent, asymptotically normal and achieves the semiparametric efficiency bound. An estimation procedure for the nonparametric part is also given and its asymptotic properties are derived. We provide an application to mortality data.

Suggested Citation

  • Nielsen, Jens P. & Linton, Oliver & Bickel, Peter J., 1998. "On a semiparametric survival model with flexible covariate effect," LSE Research Online Documents on Economics 301, London School of Economics and Political Science, LSE Library.
  • Handle: RePEc:ehl:lserod:301
    as

    Download full text from publisher

    File URL: http://eprints.lse.ac.uk/301/
    File Function: Open access version.
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Linton, Oliver, 1995. "Second Order Approximation in the Partially Linear Regression Model," Econometrica, Econometric Society, vol. 63(5), pages 1079-1112, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. van den Berg, Gerard. J. & Janys, Lena & Mammen, Enno & Nielsen, Jens Perch, 2021. "A general semiparametric approach to inference with marker-dependent hazard rate models," Journal of Econometrics, Elsevier, vol. 221(1), pages 43-67.
    2. Xuewen Lu & Jie Sun & Yongcheng Qi, 2008. "Empirical likelihood for average derivatives of hazard regression functions," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 67(1), pages 93-112, January.
    3. Lu, Xuewen, 2010. "Asymptotic distributions of two "synthetic data" estimators for censored single-index models," Journal of Multivariate Analysis, Elsevier, vol. 101(4), pages 999-1015, April.
    4. Tang, Xingyu & Li, Jianbo & Lian, Heng, 2013. "Empirical likelihood for partially linear proportional hazards models with growing dimensions," Journal of Multivariate Analysis, Elsevier, vol. 121(C), pages 22-32.
    5. Spierdijk, Laura, 2008. "Nonparametric conditional hazard rate estimation: A local linear approach," Computational Statistics & Data Analysis, Elsevier, vol. 52(5), pages 2419-2434, January.
    6. Li, Jianbo & Zhang, Riquan, 2011. "Partially varying coefficient single index proportional hazards regression models," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 389-400, January.
    7. Sun, Jie & Kopciuk, Karen A. & Lu, Xuewen, 2008. "Polynomial spline estimation of partially linear single-index proportional hazards regression models," Computational Statistics & Data Analysis, Elsevier, vol. 53(1), pages 176-188, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Xiaohong & Pouzo, Demian, 2009. "Efficient estimation of semiparametric conditional moment models with possibly nonsmooth residuals," Journal of Econometrics, Elsevier, vol. 152(1), pages 46-60, September.
    2. Chunrong Ai & Oliver Linton & Kaiji Motegi & Zheng Zhang, 2021. "A unified framework for efficient estimation of general treatment models," Quantitative Economics, Econometric Society, vol. 12(3), pages 779-816, July.
    3. Keith Vorkink & Douglas J. Hodgson & Oliver Linton, 2002. "Testing the capital asset pricing model efficiently under elliptical symmetry: a semiparametric approach," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(6), pages 617-639.
    4. Oliver Linton & Douglas Steigerwald, 2000. "Adaptive testing in arch models," Econometric Reviews, Taylor & Francis Journals, vol. 19(2), pages 145-174.
    5. Xiao, Zhijie & Phillips, Peter C. B., 1998. "Higher-order approximations for frequency domain time series regression," Journal of Econometrics, Elsevier, vol. 86(2), pages 297-336, June.
    6. Ichimura, Hidehiko & Todd, Petra E., 2007. "Implementing Nonparametric and Semiparametric Estimators," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 74, Elsevier.
    7. Chaohua Dong & Jiti Gao & Oliver Linton, 2022. "Chaohua Dong, Jiti Gao and Oliver Linton’s contribution to the Discussion of ‘Assumption‐lean inference for generalised linear model parameters’ by Vansteelandt and Dukes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(3), pages 707-708, July.
    8. Dennis Kristensen, 2009. "Semiparametric Modelling and Estimation: A Selective Overview," CREATES Research Papers 2009-44, Department of Economics and Business Economics, Aarhus University.
    9. Xia, Yingcun & Härdle, Wolfgang Karl & Linton, Oliver, 2009. "Optimal smoothing for a computationally and statistically efficient single index estimator," SFB 649 Discussion Papers 2009-028, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    10. Yang Ning & Sida Peng & Jing Tao, 2020. "Doubly Robust Semiparametric Difference-in-Differences Estimators with High-Dimensional Data," Papers 2009.03151, arXiv.org.
    11. Wang Q. & Linton O. & Hardle W., 2004. "Semiparametric Regression Analysis With Missing Response at Random," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 334-345, January.
    12. Wu, Guojun & Xiao, Zhijie, 2002. "A generalized partially linear model of asymmetric volatility," Journal of Empirical Finance, Elsevier, vol. 9(3), pages 287-319, August.
    13. Phillips, Peter C.B., 2014. "Optimal estimation of cointegrated systems with irrelevant instruments," Journal of Econometrics, Elsevier, vol. 178(P2), pages 210-224.
    14. Byunghoon Kang, 2018. "Inference in Nonparametric Series Estimation with Specification Searches for the Number of Series Terms," Working Papers 240829404, Lancaster University Management School, Economics Department.
    15. Tizheng Li & Yuping Wang, 2024. "Higher-order spatial autoregressive varying coefficient model: estimation and specification test," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 33(4), pages 1258-1299, December.
    16. Xia, Yingcun & Härdle, Wolfgang, 2006. "Semi-parametric estimation of partially linear single-index models," Journal of Multivariate Analysis, Elsevier, vol. 97(5), pages 1162-1184, May.
    17. Douglas J. Hodgson & Oliver Linton & Keith Vorkink, 2004. "Testing Forward Exchange Rate Unbiasedness Efficiently: A Semiparametric Approach," Journal of Applied Economics, Taylor & Francis Journals, vol. 7(1), pages 325-353, May.
    18. Boente, Graciela & Rodriguez, Daniela, 2008. "Robust bandwidth selection in semiparametric partly linear regression models: Monte Carlo study and influential analysis," Computational Statistics & Data Analysis, Elsevier, vol. 52(5), pages 2808-2828, January.
    19. Oliver Linton, 2001. "Symmetrizing and unitizing transformations for linear smoother weights," Computational Statistics, Springer, vol. 16(1), pages 153-164, March.
    20. Aneiros-Pérez, Germán, 2002. "On bandwidth selection in partial linear regression models under dependence," Statistics & Probability Letters, Elsevier, vol. 57(4), pages 393-401, May.

    More about this item

    Keywords

    Counting process theory; kernel estimation; predictability; semiparametric survival analysis. AMS 1991 subject classifications : Primary 62G05; secondary 62M09.;
    All these keywords.

    JEL classification:

    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ehl:lserod:301. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: LSERO Manager (email available below). General contact details of provider: https://edirc.repec.org/data/lsepsuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.